Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=6^2+8^2=100\)
hay BD=10(cm)
b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔDHA\(\sim\)ΔDAB(g-g)
-Tính DH=3,6cm.
-Từ C kẻ CK vuông với BD. Có CK=AH
-Xét tam giác ADH và DHC có chung đáy DH, chiều cao = nhau => diện tích = nhau
=> Diện tích tứ giác AHCB = diện tích ABCD - 2 lần diện tích tam giác ADH = 30,72
Đúng thì k hộ nhe =)))
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
=>ΔHAD đồng dạng với ΔABD
b: ΔHAD đồng dạng vơi ΔABD
=>DH/DA=DA/DB
=>DA^2=DH*DB
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)
Do đó: ΔAHB\(\sim\)ΔBCD(g-g)
b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)
Ta có: ΔAHB\(\sim\)ΔBCD(cmt)
nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)
Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)
hay \(AH\cdot ED=HB\cdot EB\)(đpcm)
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
1: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó:ΔAHB\(\sim\)ΔBCD
2: Ta có: ΔAHB\(\sim\)ΔBCD
nên \(\dfrac{BC}{AH}=\dfrac{CD}{HB}\)
hay BC/CD=AH/HB
mà BC/CD=EB/ED
nên EB/ED=AH/HB
hay \(EB\cdot HB=AH\cdot ED\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
góc ADH chung
Do đó: ΔAHD\(\sim\)ΔBAD
a: BD=căn 8^2+6^2=10cm
b: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
c: AH=8*6/10=4,8cm