tìm a,b biết:
a+b =162; \(\dfrac{1}{2}\)a = \(\dfrac{1}{3}\)b +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: 5x=-4y
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
mà x+y=45
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}=\dfrac{x+y}{\dfrac{1}{5}-\dfrac{1}{4}}=\dfrac{45}{-\dfrac{1}{20}}=900\)
Do đó: x=180; y=-225
b: Ta có: \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
nên \(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}\)
mà -3x-2y=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}=\dfrac{-3x-2y}{-\dfrac{3}{5}+\dfrac{1}{2}}=\dfrac{24}{\dfrac{-1}{10}}=-240\)
Do đó: \(\left\{{}\begin{matrix}-3x=144\\-2y=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-48\\y=60\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=100\\a-b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\a-b=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\100-b-b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\2b=64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\b=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=68\\b=32\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=162\\\dfrac{1}{2}a-\dfrac{1}{3}b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=66\\b=96\end{matrix}\right.\)