Cho a>b chứng minh. 7a - 4 > 7b - 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$
Ta có:
\(\frac{7a-11c}{7b-11d}=\frac{7bt-11dt}{7b-11d}=\frac{t(7b-11d)}{7b-11d}=t(1)\)
\(\frac{7a+11c}{7b+11d}=\frac{7bt+11dt}{7b+11d}=\frac{t(7b+11d)}{7b+11d}=t(2)\)
Từ $(1);(2)\Rightarrow \frac{7a-11c}{7b-11d}=\frac{7a+11c}{7b+11d}$
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{7a}{7b}=\frac{5c}{5d}\)
\(\Rightarrow\frac{a}{b}=\frac{7a+5c}{7b+5d}\)
Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)
VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được
Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)
Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)
Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)
Cộng vế với vế:
\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)
Dấu "=" xảy ra khi a=b=c=1
\(a>b\Rightarrow7a>7b\) (do \(7>0\))
\(\Rightarrow7a-4>7b-4\)
ta có a>b
=>7a>7b
=> 7a-4>7b-4 ( dpcm)