K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

\(a>b\Rightarrow7a>7b\) (do \(7>0\))

\(\Rightarrow7a-4>7b-4\)

13 tháng 5 2022

ta có a>b 

=>7a>7b

=> 7a-4>7b-4 ( dpcm)

NV
19 tháng 11 2018

Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)

VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được

Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)

Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)

Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)

Cộng vế với vế:

\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi a=b=c=1

27 tháng 7 2019

a/ Ta có: 7a+4=3a+4a+4=3a+4(a+1)

Do a+1\(⋮\)3 (gt) và 3a\(⋮\)\(\forall\)a\(\in\)Z

Nên 7a+4 \(⋮\)3

b/ Ta có 2+a\(⋮\)11(gt) và 35-b\(⋮\)11(gt)

Suy ra: 2+a-(35-b)\(⋮\)11 tương đương với a+b-33\(⋮\)11

Mà -33 \(⋮\)11 nên a+b\(⋮\)11

24 tháng 3 2018

a)Vì a<b=>2a<2b

=>2a+5<2b+5

b)Vì a<b=>-10a>-10b

=>2-10a>2-10b

c)Vì a<b=>7a<7b

=>7a-3<7b-3(1)

Vì -3<-1=>7b-3<7b-1(2)

Từ (1) và (2)=>đpcm

d)Vì a<b=>\(-\dfrac{a}{3}< -\dfrac{b}{3}\)

=>\(3-\dfrac{a}{3}>3-\dfrac{b}{3}\)(3)

Vì 3>1=>\(3-\dfrac{b}{3}>1-\dfrac{b}{3}\)(4)

Từ (3) và (4)=> đpcm

24 tháng 3 2018

a, Ta có: a < b \(\Rightarrow\) 2a < 2b \(\Rightarrow\) 2a + 5 < 2b + 5

b, Ta có: a < b \(\Rightarrow\) -10a > -10b (đổi dấu) \(\Rightarrow\) 2 + (-10a) > 2 + (-10b) \(\Leftrightarrow2-10a>2-10b\)

c, Ta có: a < b \(\Rightarrow\)7a < 7b

Lại có: -3 < -1

\(\Rightarrow\) 7a + (-3) < 7a + (-1) \(\Leftrightarrow\) 7a - 3 < 7b - 1

d, Ta có: a < b \(\Rightarrow-\dfrac{a}{3}>-\dfrac{b}{3}\)(đổi dấu)

Lại có: 3 > 1

\(\Rightarrow3+\left(-\dfrac{a}{3}\right)>1+\left(-\dfrac{b}{3}\right)\Leftrightarrow3-\dfrac{a}{3}>1-\dfrac{b}{3}\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$

Ta có:
\(\frac{7a-11c}{7b-11d}=\frac{7bt-11dt}{7b-11d}=\frac{t(7b-11d)}{7b-11d}=t(1)\)

\(\frac{7a+11c}{7b+11d}=\frac{7bt+11dt}{7b+11d}=\frac{t(7b+11d)}{7b+11d}=t(2)\)

Từ $(1);(2)\Rightarrow \frac{7a-11c}{7b-11d}=\frac{7a+11c}{7b+11d}$

 

14 tháng 10 2021

Cảm ơn bạn :3

29 tháng 7 2017

Sửa đề:

\(3a^3+6b^3=a^3+a^3+a^3+b^3+b^3+b^3+b^3+b^3+b^3\)

\(\ge9\sqrt[9]{a^3.a^3.a^3.b^3.b^3.b^3.b^3.b^3.b^3}=9\sqrt[9]{a^9.b^{18}}=9ab^2\)

19 tháng 8 2017

đề đúng rồi , bài cậu làm cũng đúng

14 tháng 5 2021

Bài này sửa đề thành \(\hept{\begin{cases}a,b,c\ge0\\a+b+c=1\end{cases}}\) thì mới chặt chẽ để có thể giải được

Khi đó \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)

Ta cần chứng minh: \(\sqrt{7a+9}\ge a+3\)

\(\Leftrightarrow7a+9\ge a^2+6a+9\)\(\Leftrightarrow a\ge a^2\) (luôn đúng)

Tương tự chứng minh được:

\(\sqrt{7b+9}\ge b+3\) và \(\sqrt{7c+9}\ge c+3\)

Khi đó:

\(S=\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\ge a+b+c+9=1+9=10\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=1\\b=c=0\end{cases}}\) và các hoán vị của chúng