K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 11 2018

Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)

VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được

Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)

Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)

Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)

Cộng vế với vế:

\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi a=b=c=1

20 tháng 10 2017

nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)

19 tháng 7 2018

\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)

Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)

Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)

\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 7 2018

sos là giúp đở = cứu ; helps cũng vậy

NV
15 tháng 1 2021

\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)

Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)

Cộng vế với vế:

\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2019

Lời giải:
Vì $abc=1$ nên tồn tại $x,y,z$ sao cho : \((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)

Khi đó:

\(\text{VT}=\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}+\frac{1}{\sqrt{\frac{y}{x}+\frac{y}{z}+2}}+\frac{1}{\sqrt{\frac{z}{y}+\frac{z}{x}+2}}=\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}+\frac{\sqrt{xz}}{\sqrt{xy+yz+2xz}}+\frac{\sqrt{xy}}{\sqrt{xz+yz+2xy}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}^2\leq (1+1+1)\left(\frac{yz}{xy+xz+2yz}+\frac{xz}{xy+yz+2xz}+\frac{xy}{xz+yz+2xy}\right)\)

\(\leq 3\left[\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)+\frac{xz}{4}\left(\frac{1}{xy+xz}+\frac{1}{xz+yz}\right)+\frac{xy}{4}\left(\frac{1}{xz+xy}+\frac{1}{yz+xy}\right)\right]\)

hay \(\text{VT}^2\leq \frac{3}{4}.\left(\frac{xy+yz}{xy+yz}+\frac{xy+xz}{xy+xz}+\frac{yz+xz}{yz+xz}\right)=\frac{9}{4}\)

\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

19 tháng 12 2018

sai roi

9 tháng 12 2019

Điểm rơi \(\left(1;0;0\right)\) và các hoán vị.Ta UCT:)

Ta bất đẳng thức phụ:

\(\sqrt{7x+9}\ge x+3\) với \(0\le x\le1\)

\(\Leftrightarrow7x+9\ge x^2+6x+9\)

\(\Leftrightarrow7\ge x+6\)

\(\Leftrightarrow x\le1\left(true!!\right)\)

Khi đó ta có:

\(\sqrt{7a+9}\le a+3;\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)

\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)

Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị.