K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2022

\(=5\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\right)=\)

\(=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\)

\(=5\left(1-\dfrac{1}{50}\right)\)

Ta có

\(1-\dfrac{1}{50}< 1\Rightarrow5\left(1-\dfrac{1}{50}\right)< 5\left(dpcm\right)\)

Sửa đề: A=5/2+5/6+...+5/2450

=5(1/2+1/6+...+1/2450)

=5(1-1/2+1/2-1/3+...+1/49-1/50)

=5*49/50<5

7 tháng 5 2019

Ta có: 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Ta có:\(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75};\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)

Tự giải tiếp hay nhờ thầy cô giảng tiếp đi nha bn, mỏi tay nên ko thể làm đc nữa !!

8 tháng 7 2019

nhanh giúp mik vs

8 tháng 7 2019

#)Giải :

Ta có : \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}< \frac{5}{6}\)(có 10 số \(\frac{1}{20}\))

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}< \frac{5}{6}\)

Hay \(S< \frac{5}{6}\left(đpcm\right)\)

17 tháng 1 2020

Ta có : \(R=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{39}\)

\(\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}\right)\)

          10 hạng tử                                       10 hạng tử

\(>\left(\frac{1}{29}+\frac{1}{29}+...+\frac{1}{29}\right)+\left(\frac{1}{39}+\frac{1}{39}+...+\frac{1}{39}\right)\)

             10 hạng tử 1/29                                10 hạng tử 1/39

\(=\frac{10}{29}+\frac{10}{39}>\frac{10}{30}+\frac{10}{40}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\Rightarrow R>\frac{7}{12}\left(1\right)\)

Lại có : \(R=\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}\right)\) 

                            10 số hạng                                        10 số hạng

\(>\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)=\frac{10}{20}+\frac{10}{30}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

=> \(R>\frac{5}{6}\left(2\right)\)

Từ (1) và (2) => \(\frac{7}{12}< R< \frac{5}{6}\left(\text{ĐPCM}\right)\)

DD
1 tháng 3 2021

\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{20}\)

\(=\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\frac{1}{12}+\left(\frac{1}{13}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{20}\right)\)

\(>\left(\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\right)+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\frac{1}{12}+\left(\frac{1}{16}+...+\frac{1}{16}\right)+\left(\frac{1}{24}+...+\frac{1}{24}\right)\)

\(=\frac{1}{3}+\frac{1}{4}+\frac{1}{12}+\frac{1}{4}+\frac{1}{6}=1+\frac{1}{12}\)

\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{19}\)

\(=\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+...+\frac{1}{19}\right)\)

\(< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)

\(=\frac{5}{5}+\frac{5}{10}+\frac{5}{15}=1+\frac{5}{6}\)

23 tháng 4 2018

1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh

b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh

Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy