Rut gon bieu thuc
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1.\left(a+b\right)\left(a^2+b^2\right).......\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)....\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)....\)
\(=\left(a^4-b^4\right)\left(a^4+b^4\right)......\)
\(=\left(a^8-b^8\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)
\(=\left(a^{16}-b^{16}\right)\left(a^{16}+b^{16}\right)\)
\(=a^{32}-b^{32}\)
\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)+11\)
\(=\left(3^{64}-1\right)+11=3^{64}+10\)
A = 8.(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (38 - 1)(38 + 1)(316 + 1)(332 + 1) + 1
A = (316 - 1)(316 + 1)(332 + 1) + 1
A = (332 - 1)(332 + 1) + 1
A = 364 - 1 + 1
A = 364
\(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right).\left(2^8+1\right)\left(2^{16}+1\right)....\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right).\left(2^{64}+1\right)+1\)
\(=2^{64}-1+1=2^{64}\)
Vậy : \(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1=2^{64}\)
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
Bài này có rắc rối đâu em?
Thực hiện phép tính trong ngoặc lại là ra dạng (n+1)/n.
1 dãy các số liên tục kéo dài nhân với nhau thì triệt tiêu là xong!
Chúc em học tốt!
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\)
\(\Rightarrow2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(\Rightarrow A=2-\dfrac{1}{2^{2017}}=\dfrac{2^{2018}-1}{2^{2017}}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(2A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)\)
\(2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(A=2-2^{2017}\)
=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=...=2^32-1
nhân hết ra là xong:))
bài về nhà hs phải tự làm