Tìm x:
(2x+7)^2-36=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{3;-3\right\}\)
\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)
\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;5\right\}\)
\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)
\(\Leftrightarrow\left(y-3\right)^2=0\)
\(\Leftrightarrow y=3\)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)
\(2x+\left(1+2+3+...+100\right)=15150\)
\(2x+\left[\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)\right]=15150\)
\(2x+\left[101+101+...+101\right]=15150\)CÓ 50 SỐ 101
\(2x+\left[101\times50\right]=15150\)
\(2x=15150:5050\)
\(2x=3\)
\(x=3:2\)
\(x=1.5\)
a, 2x + (1+2+3+4+...+100) = 15150
=> 2x + \(\frac{\left(1+100\right).\left[\left(100-1\right)+1\right]}{2}\)= 15150
=> 2x + \(\frac{101.100}{2}\)= 15150
=> 2x + 5050 = 15150
=> 2x = 15150 - 5050
=> 2x = 10100
=> x = 10100 : 2
=> x = 5050
Vậy x = 5050
b, .(x+1)+(x+2)+(x+3)+(x+4)+(x+5)+(x+6)+(x+7)+(x+8)=36
=> (x + x + x + x +x + x +x +x ) + (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) = 36
=> 8x + 36 = 36
=> 8x = 0
=> x = 0
Vậy x = 0
c, 0+0+4+6+8+...+2x=110
Sửa đề :0 + 2 + 4 + 6 + 8 + ... + 2x = 110 = 2 + 4 + 6 + 8 + ... + 2x = 110
SSH : \(\frac{\left(2\text{x}-2\right)}{2}+1=x-1+1=x\)
Tổng : \(\frac{\left(2\text{x}+2\right).x}{2}=110\Leftrightarrow\frac{2.\left(x+1\right).x}{2}=110\)
\(\Leftrightarrow\left(x+1\right)x=110\)
\(\Leftrightarrow\left(10+1\right).10=110\)
=> x = 10
Vậy x = 10
a: Ta có: \(\left(x+2\right)^2+\left(2x-1\right)^2-\left(x-3\right)^2=36\)
\(\Leftrightarrow x^2+4x+4+4x^2-4x+1-x^2+6x-9=36\)
\(\Leftrightarrow4x^2+6x-4-36=0\)
\(\Leftrightarrow4x^2+6x-40=0\)
\(\text{Δ}=6^2-4\cdot4\cdot\left(-40\right)=676\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-6-26}{8}=-4\\x_2=\dfrac{-6+26}{8}=\dfrac{5}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)
\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)
`(2x+5)(2x-7)-(2x-3)^2=36`
`<=>4x^2-14x+10x-35-(4x^2-12x+9)=36`
`<=>4x^2-4x-35-4x^2+12x-9=36`
`<=>8x-44=36`
`<=>8x=80`
`<=>x=10`
Vậy `S={10}`
Ta có: \(\left(2x+5\right)\left(2x-7\right)-\left(2x-3\right)^2=36\)
\(\Leftrightarrow4x^2-14x+10x-35-\left(4x^2-12x+9\right)=36\)
\(\Leftrightarrow4x^2-4x-35-4x^2+12x-9=36\)
\(\Leftrightarrow8x-44=36\)
\(\Leftrightarrow8x=80\)
hay x=10
Vậy: S={10}
(2x+7)^2-36=0
(2x+7)^2=0+36=36
(2x+7)^2=6^2
nên 2x+7=6
2x=6-7=-1
nên x=-1/2
Thank you very much!