cho a+b+c=0, a^2+b^2+c^2=14. Tính a^4+b^4+c^4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a+b+c = 0
<=> (a+b+c)^2 = 0
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0
<=>14 + 2(ab + ac + bc) = 0
<=> 2(ab + ac + bc) = -14
<=> ab + ac + bc = -7
=> (ab + ac + bc)^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49
Ta có: a^2 + b^2 + c^2 = 14
=> (a^2 + b^2 + c^2)^2 = 14^2
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196
<=> a^4 + b^4 + c^4 + 2 . 49 = 196
<=> a^4 + b^4 + c^4 + 98 = 196
<=> a^4 + b^4 + c^4 = 98
a+b+c = 0
<=> (a+b+c)^2 = 0
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0
<=>14 + 2(ab + ac + bc) = 0
<=> 2(ab + ac + bc) = -14
<=> ab + ac + bc = -7
=> (ab + ac + bc)^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49
Ta có: a^2 + b^2 + c^2 = 14
=> (a^2 + b^2 + c^2)^2 = 14^2
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196
<=> a^4 + b^4 + c^4 + 2 . 49 = 196
<=> a^4 + b^4 + c^4 + 98 = 196
<=> a^4 + b^4 + c^4 = 98