D=1/10+1/15+1/21+....+1/120
Tìm D
Các bạn giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1/10 + 1/15 + 1/21 +....+ 1/120
M=2/20 +2/30+2/42+....+2/240
M=2/4.5 + 2/5.6 + 2/6.7 +.....+ 2/15.16
M=2.(1/4.5 +......+ 1/15.16)
M=2.(1/4 -1/5 +1/5 - 1/6 +.....+ 1/15 - 1/16)
M=2.(1/4 - 1/16)
M=2.(4/16 - 1/16)
M=2. 3/16
M=6/16=3/8
Có 1/3 = 8/24 < 9/24 = 3/8 =>1/3<M
Có 1/2 = 4/8>3/8 =>1/2 >M
=> 1/3 < M < 1/2
ta có
(1/3+1/6+1/36) +(1/10+1/15+1/45)+(1/21+1/28)
=(\(\frac{12+6+1}{36}\)+\(\frac{9+6+2}{90}\)+\(\frac{4+3}{84}\)
19/36+17/90+1/12
=(19/36+1/12)+17/90
=7/12+17/90
=105/180+34/180
=139/180
1/3 +1/6+1/10+1/15+1/21+1/28+1/36+1/45
=1/1x3+1/3x2+1/2x5+1/3x5+1/3x7+1/7x4+1/4x9+1/9x5
=1/1-1/3+1/3-1/2....+1/9-1/5
=1/1
a) \(\dfrac{-15}{4}:\dfrac{21}{-10}=\dfrac{-15}{4}.\dfrac{-10}{21}=\dfrac{25}{14}\)
b) \(\dfrac{-7}{14}:\left(-0,14\right)=\dfrac{-7}{14}.\dfrac{-50}{7}=\dfrac{25}{7}\)
c) \(\left(\dfrac{-11}{15}\right):1\dfrac{1}{10}=\dfrac{-11}{15}.\dfrac{10}{11}=\dfrac{-2}{3}\)
d) \(2\dfrac{1}{7}:1\dfrac{1}{14}=\dfrac{15}{7}.\dfrac{14}{15}=2\)
\(a.-\dfrac{15}{4}:\left(\dfrac{21}{-10}\right)\)
\(=-\dfrac{15}{4}\cdot\left(-\dfrac{10}{21}\right)\)
\(=\dfrac{25}{14}\)
\(b.-\dfrac{7}{14}:\left(-0,14\right)\)
\(=-\dfrac{1}{2}:\left(-\dfrac{7}{50}\right)\)
\(=\dfrac{25}{7}\)
\(c.\left(-\dfrac{11}{15}\right):\left(1\dfrac{1}{10}\right)\)
\(=\left(-\dfrac{11}{15}\right):\dfrac{11}{10}\)
\(=-\dfrac{2}{3}\)
\(d.\left(2\dfrac{1}{7}\right):\left(1\dfrac{1}{14}\right)\)
\(=\dfrac{15}{7}:\dfrac{15}{14}\)
\(=2\)
Ta có:
\(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{195}\)
\(\Rightarrow2A=\frac{2}{3}+\frac{2}{15}+\frac{2}{21}+...+\frac{2}{195}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{1}-\frac{1}{15}\)
\(=\frac{14}{15}\)
\(\Rightarrow2A=\frac{14}{15}\Rightarrow A=\frac{14}{15}\div2=\frac{7}{15}\)
Vậy A = 7/15
\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right):\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)\)
=\(\frac{1}{3}+\frac{1}{5}\)
=\(\frac{5}{3}\)
\(D=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2.\frac{3}{16}=\frac{3}{8}\)