K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

S=\(\frac{4^{39}-1}{3}\)

b)lấy 4^39 -1 chia cho 15

\(4^{10}\)đồng dư vs 1 theo mod 15

4^30 đồng dư với 1 theo mod 15

4^39 đồng sư với  4 theo mod 15

4^39-1 đồng dư với 3 theo mod 15

\(\Rightarrow\)4^39-1=15k+3

S=\(\frac{4^{39}-1}{3}=\frac{15k+3}{3}=5k+1\)

c)5:21 dư 5

13 tháng 2 2022

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

24 tháng 1 2021

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên 

       * Vậy A chia hết cho 27

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

16 tháng 10 2023

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

18 tháng 2 2020

2. b)

Vì 332 chia a dư 17 nên ( 332-17) \(⋮\)a => 315\(⋮\)a

Vì 555 chia a dư 15 nên ( 555-15)\(⋮\)a =>540\(⋮\)a

Vì 315\(⋮\)a mà 540\(⋮\)a nên a \(\in\)ƯCLN( 315;540)

315= 32.5.7

540= 22..33.5

ƯCLN(315;540) =5.32= 45

Vậy...

Ko chắc

18 tháng 2 2020

2

a) ta có : aaa . bbb 

             =a . 111 . b . 111

             =a . 37.3 .b .111

=>   a.37.3.b.111 chia hết cho 37 hay aaa.bbb chia hết cho 37

mình nghĩ thế , ko chắc đúng đâu nhé

16 tháng 10 2023

\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)

\(2S=2^2+2.2^3+3.2^4+...+2016.2^{2017}\)

\(2S-S=S=\text{​​}\text{​​}\text{​​}\text{​​}2^2+2.2^3+3.2^4+...+2016.2^{2017}-2-2.2^2-3.2^3-...-2016.2^{2016}\)

\(S=2\left(0-1\right)+2^2\left(1-2\right)+2^3\left(2-3\right)+...+2^{2016}\left(2015-2016\right)+2^{2017}.2016\)

\(S=-\left(2+2^2+2^3+...+2^{2016}\right)+2^{2017}.2016\)

\(\)Đặt \(A=2+2^2+2^3+...+2^{2016}\)

\(2A=2^2+2^3+2^4+...+2^{2017}\)

\(2A-A=A=2^2+2^3+2^4+...+2^{2017}-2-2^2-2^3-...-2^{2016}\)

\(A=2^{2017}-2\)

Thay vào S ta được:
\(S=-2^{2017}+2+2^{2017}.2016\)

\(S=2^{2017}.2015+2\)

Ta có \(S+2013=2^{2017}.2015+2+2013\)

\(S+2013=2^{2017}.2015+2015\)

\(S+2013=2015\left(2^{2017}+1\right)\)

Suy ra \(S+2013⋮2^{2017}+1\)

Vậy \(S+2013⋮2^{2017}+1\) (đpcm)

16 tháng 10 2023

cái này dễ lắm lun

 

19 tháng 12 2021

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)

19 tháng 12 2021

\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)

\(=5\left(1+...+4^{98}\right)⋮5\)