Tính nhanh:
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
Ai nhanh mik tick cho. Giải ra nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)
2\(\times\)C = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)
2 \(\times\) C - C = 1 - \(\dfrac{1}{128}\)
C = \(\dfrac{127}{128}\)
\(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{128}\\ =\dfrac{63}{128}\)
\(7m^28dm^2=7,08m^2\)
A=(\(\dfrac{1}{3}-\dfrac{1}{3}\))\(+\left(\dfrac{3}{5}+\left(\dfrac{-3}{5}\right)\right)+\left(\dfrac{-5}{7}+\dfrac{5}{7}\right)+\left(\dfrac{-7}{9}+\dfrac{7}{9}\right)\)\(+\left(\dfrac{-11}{13}-\dfrac{9}{11}\right)\)
A\(=0+0+0+0+\dfrac{-238}{143}\)
A\(=\dfrac{-238}{143}\)
\(B=\left(1+\dfrac{1}{2}\right)+\left(1+\dfrac{1}{4}\right)+\left(1+\dfrac{1}{8}\right)+\left(1+\dfrac{1}{32}\right)+\left(1+\dfrac{1}{64}\right)-7\)
\(B=\left(1+1+1+1+1\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)-7\)
\(B=6+\dfrac{63}{64}-7\)
\(B=-1+\dfrac{63}{64}\)
\(B=\dfrac{-1}{64}\)
\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{264}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=1\)
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)
=>\(B=\dfrac{32+16+6+2+1}{64}\)
=>\(B=\dfrac{63}{64}\)
\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{128}-\dfrac{1}{256}\right)\)
\(A=1-\dfrac{1}{256}\)
\(A=\dfrac{255}{256}\)
Ta có: \(VT=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(4VT=\dfrac{1}{2^2:2^2}+\dfrac{1}{4^2:2^2}+\dfrac{1}{6^2:2^2}+...+\dfrac{1}{100^2:2^2}\)
\(4VT=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
Lại có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\Rightarrow4VT-1< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)(*)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}\) (**)
Từ (*) và (**) \(\Rightarrow4VT< 2-\dfrac{1}{50}\)
\(\Rightarrow VT< \dfrac{1}{2}-\dfrac{1}{200}< VP\Rightarrow\) đpcm
b) Ta có: \(2VT=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)
\(2VT+VT=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)
\(3VT=1-\dfrac{1}{64}< 1\)
\(\Rightarrow VT< \dfrac{1}{3}\) (đpcm)
\(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64} \)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{64}+\dfrac{1}{64}\)
=0
ủa có sai ko;-;
\(\dfrac{63}{64}\)=))