Cho biểu thức
C = 2 + 2 mũ 2 + 2 mũ 3 + ... + 2 mũ 10
Chứng minh rằng C chia hết cho 3 ; 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+2^4+...+2^{10}\)
=>\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
=>\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
=>\(B=3\left(2+2^3+...+2^9\right)⋮3\left(đpcm\right)\)
Trả lời:
\(B=2+2^2+2^3+2^4+....2^9+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\) (Phần này là nhóm các lũy thừa có cùng cơ số 2 vào các nhóm sao cho tổng nhóm đầu tiên chia hết cho 3 thì mấy nhóm sau với số số hạng tương tự nhóm 1 thì oke giải tiếp như sau)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^3+...+2^9\right)\)
Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)
=> đpcm
Vậy B chia hết cho 3
#Huyền Anh
\(B=2+2^2+2^3+2^4+...+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^2\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^2+...+2^9\right)⋮3\)
\(\Rightarrow B⋮3\)
..
cho biểu thức C = 4 + 4 mũ 2 + 4 mũ 3 + .....+ 4 mũ 2021 + 4 mũ 2022
chức minh rằng C chia hết cho 5
\(C=4+4^2+4^3+...+4^{2021}+4^{2022}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{2021}.5\)
\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)
Vậy \(C⋮5\)
`#3107.101107`
a,
\(C=2+2^3+2^5+...+2^{23}\)
\(=\left(2+2^3+2^5\right)+\left(2^5+2^7+2^9\right)+...+\left(2^{19}+2^{21}+2^{23}\right)\)
\(=2\left(1+2^2+2^4\right)+2^5\cdot\left(1+2^2+2^4\right)+...+2^{19}\cdot\left(1+2^2+2^4\right)\)
\(=\left(1+2^2+2^4\right)\cdot\left(2+2^5+...+2^{19}\right)\)
\(=21\cdot\left(2+2^5+...+2^{19}\right)\)
Vì \(21\text{ }⋮\text{ }21\)
\(\Rightarrow21\left(2+2^5+...+2^{19}\right)\text{ }⋮\text{ }21\)
Vậy, \(C\text{ }⋮\text{ }21\)
b,
\(C=2+2^3+2^5+...+2^{23}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{21}+2^{23}\right)\)
\(=\left(2+2^3\right)+2^4\cdot\left(2+2^3\right)+...+2^{20}\cdot\left(2+2^3\right)\)
\(=\left(2+2^3\right)\cdot\left(1+2^4+...+2^{20}\right)\)
\(=10\cdot\left(1+2^4+...+2^{20}\right)\)
Vì \(10\text{ }⋮\text{ }10\)
\(\Rightarrow10\cdot\left(1+2^4+...+2^{20}\right)\text{ }⋮\text{ }10\)
Vậy, \(C\text{ }⋮\text{ }10.\)
a) c = 2 + 2³ + 2⁵ + ... + 2¹⁹ + 2²¹ + 2²³
= (2 + 2³ + 2⁵) + (2⁷ + 2⁹ + 2¹¹) + ... + (2¹⁹ + 2²¹ + 2²³)
= 2.(1 + 2² + 2⁴) + 2⁷.(1 + 2² + 2⁴) + ... + 2¹⁹.(1 + 2² + 2⁴)
= 2.21 + 2⁷.21 + ... + 2¹⁹.21
= 21.(2 + 2⁷ + ... + 2¹⁹) ⋮ 21
Vậy c ⋮ 21
b) c = 2 + 2³ + 2⁵ + 2⁷ + ... + 2²¹ + 2²³
= (2 + 2³) + (2⁵ + 2⁷) + ... + (2²¹ + 2²³)
= 10 + 2⁴.(2 + 2³) + ... + 2²⁰.(2 + 2³)
= 10 + 2⁴.10 + ... + 2²⁰.10
= 10.(1 + 2⁴ + ... + 2²⁰) ⋮ 10
Vậy c ⋮ 10
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)