số tự nhiên a chia cho 26 dư 4
hỏi a có chia hết cho 2,4 không
nếu không chia hết thì dư bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 28 (dư 6) => a chẵn
=> a chia hết cho 2
a chia hết 28 => a chia hết cho 4
Mà: 6 chia 4 dư 2
=> a chia 28 (dư 6) thì chia 4 dư 2.
a : 7 (dư 5)
a : 13 (dư 4)
=> a + 9 chia hết cho 7 và 13.
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91.
=> a chia cho 91 dư 91-9 = 82.
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem chia số đó cho 91 dư 82.
C1:
Gọi so can tim la x
Theo bài ra ta có
x = 7a + 5 va x= 13b + 4
Ta lại có x + 9 = 7a + 14 = 13b + 13
-> x + 9 chia hết cho 7 và 13
-> x + 9 chia hết cho 7.13 = 91
-> x + 9 = 91m -> x = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy x chia 91 dư 82
C2:
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k
=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư -9 (hoặc 82)
C3:
Gọi a là số tự nhiên đó
Theo bài ra ta có
a = 7k + 5 và a = 13l + 4
Ta lại có a + 9 = 7k + 14 = 13l + 13
-> a + 9 chia hết cho 7 và 13
-> a + 9 chia hết cho 7.13 = 91
-> a + 9 = 91m -> a = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy a chia 91 dư 82
Đề chưa đủ dữ kiện nên mình viết cách giải thôi nhé.
\(a\)chia cho \(4\)dư \(5\)nên \(a=4k+5\left(k\inℤ\right)\Rightarrow9a=36k+45\)
\(a\)chia cho 9 dư \(x\)nên \(a=9l+x\left(l\inℤ\right)\Rightarrow8a=72l+8x\)
\(\Rightarrow a=36\left(k-2l\right)+45-8x\)
Nếu \(0\le45-8x< 36\)thì số dư của \(a\)cho \(36\)là \(45-8x\).
Trường hợp ngược lại thì ta cộng (hoặc trừ) thêm một số nguyên lần \(36\)để tổng đó thuộc \(\left[0,35\right]\)thì đó sẽ là số dư của \(a\)cho \(36\).
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
a: 26 (dư 4)=> a là số chẵn
=> a chia hết cho 2.
a: 26 ( dư 4) => a: (24+2) (dư 4)
=> a không chia hết cho 4 (chia 4 dư 2)