tìm giá trị nhỏ nhất
A=5(x-29)^2+1
tìm giá trị lớn nhất
B=4-(1\2-2)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
\(B=\left(x^2+1\right)\left(y^2+1\right)-\left(x-4\right)\left(x+4\right)-\left(y-5\right)\left(y+5\right)\\ B=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\\ B=x^2y^2+41\ge41\)
Dấu "=" xảy ra khi \(x^2y^2\Leftrightarrow x=y=0\)
Vậy \(MaxB=41\Leftrightarrow x=y=0\)
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\\ A=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi
\(\left(x^2+5x\right)^2=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(MaxA=-36\Leftrightarrow x\in\left\{0;-5\right\}\)
Bài 1:
A = 3(x + 1)2 + 5
Ta có: (x + 1)2 \(\ge\) 0 Với mọi x
\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 3(x + 1)2 + 5 \(\ge\) 5 với mọi x
Hay A \(\ge\) 5
Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1
Vậy...
B = 2|x + y| + 3x2 - 10
Ta có: 2|x + y| \(\ge\) 0 với mọi x, y
3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y
Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0
\(\Rightarrow\) x = y = 0
Vậy ...
C = 12(x - y)2 + x2 - 6
Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y
x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = y = 0
Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất
Bài 2:
Phần A ko rõ đầu bài!
B = 3 - (x + 1)2 - 3(x + 2y)2
Ta có: -(x + 1)2 \(\le\) 0 với mọi x
-3(x + 2y)2 \(\le\) 0 với mọi x, y
\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)2 \(\le\) 3 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0
\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)
Vậy ...
C = -12 - 3|x + 1| - 2(y - 1)2
Ta có: -3|x + 1| \(\le\) 0 với mọi x
-2(y - 1)2 \(\le\) 0 với mọi y
\(\Rightarrow\) -12 - 3|x + 1| - 2(y - 1)2 \(\le\) -12 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0
\(\Rightarrow\) x = -1; y = 1
Vậy ...
Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa
F = \(\dfrac{-5}{3}\) - 2x2
Ta có: -2x2 \(\le\) 0 với mọi x
\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy ...
Chúc bn học tốt!
\(B=-\dfrac{5}{\left(x+3\right)^2}+1\)
Để phân số \(-\dfrac{5}{\left(x+3\right)^2}\) tồn tại thì \(\left(x+3\right)^2\ne0\)
Mà \(\left(x+3\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+3\right)^2>0\)
Theo đề bài ta có x là số nguyên nên \(\left(x+3\right)^2\) là số nguyên dương
`=>` GTNN của \(\left(x+3\right)^2\) là 1 hay \(\left(x+3\right)^2\ge1\)
\(\Rightarrow\dfrac{5}{\left(x+3\right)^2}\le\dfrac{5}{1}=5\\ \Rightarrow-\dfrac{5}{\left(x+3\right)^2}\ge-5\\ \Rightarrow B=-\dfrac{5}{\left(x+3\right)^2}+1\ge-5+1=-4\)
Dấu bằng xảy ra khi: \(\left(x+3\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\x+3=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy \(MinB=-4\Leftrightarrow x\in\left\{-4;-2\right\}\)
\(A=\left|x-2\right|+\left|x-5\right|\\ A=\left|x-2\right|+\left|5-x\right|\)
Có \(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|\\ \Leftrightarrow A\ge\left|3\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)\left(5-x\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\le5\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\ge5\end{matrix}\right.\end{matrix}\right.\)
Trường hợp bên dưới vô lý, loại. Vậy GTNN của \(A=3\) khi \(2\le x\le5\)
Áp dụng BĐT `|A|+|B|>=|A+B|` và dấu = `<=>AB>=0`
`=>A=|x-2|+|5-x|>=|x-2+5-x|=3`
Dấu "=" `<=>(x-2)(5-x)>=0`
`<=>(x-2)(x-5)<=0`
`<=>2<=x<=5`
\(\left|x-\dfrac{2}{3}\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
Ta có: \(A=-2x^2-5x+3\)
\(=-2\left(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\)
Ta có: \(\left(x+\dfrac{5}{4}\right)^2\ge0\forall x\)
\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2\le0\forall x\)
\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{5}{4}=0\)
hay \(x=-\dfrac{5}{4}\)
Vậy: Giá trị lớn nhất của biểu thức \(A=-2x^2-5x+3\) là \(\dfrac{49}{8}\) khi \(x=-\dfrac{5}{4}\)
GTNN của A = 1 khi x= 29
GTLN của B = 4