Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-\dfrac{2}{3}\right|-4\ge-4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
A = 5x² + 6
Do x² ≥ 0
⇒ 5x² ≥ 0
⇒ 5x² + 6 ≥ 6
Vậy giá trị nhỏ nhất của A là 6 khi x = 0
--------------------
B = 4(2x - 4)² + 2023
Do (2x - 4)² ≥ 0
⇒ 4(2x - 4)² ≥ 0
⇒ 4(2x - 4)² + 2023 ≥ 2023
Vậy giá trị nhỏ nhất của B là 2023 khi x = 2
1) `(x-3)^4 >=0`
`2.(x-3)^4>=0`
`2.(x-3)^4-11 >=-11`
`=> A_(min)=-11 <=> x-3=0<=>x=3`
2) `|5-x|>=0`
`-|5-x|<=0`
`-3-|5-x|<=-3`
`=> B_(max)=-3 <=>x=5`.
Bài 1:
Ta có: \(\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4-11\ge-11\forall x\)
Dấu '=' xảy ra khi x=3
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
GTNN của A = 1 khi x= 29
GTLN của B = 4