K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2015

 

(a+b+c)3= (a+b)3+3(a+b)2c+3(a+b)c2+c2

            =a3+3a2b+3ab2+b2+3(a+b)c(a+b+c)+c2

            =a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)

            =a3+b3+c3+3(a+b)[ab+c(a+b+c)]

            =a3+b3+c3+3(a+b)(ab+ac+bc+c2)

           =a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]

           =a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]

           =a3+b3+c3+3(a+b)(b+c)(c+a)

Vậy (a+b+c)3 = a3 + b3 + c3 + 3(a+b)(b+c)(c+a)

2 tháng 11 2021

1. x=0

2. a) x = 1 và 1,1

b) x= 64,98; 64,99; 65;...

 

2 tháng 11 2021

1.0

2.

a. 1  b.65

14 tháng 2 2017

bạn có biết ko?

8 tháng 10 2017

(6+4).(6-4)=20

8 tháng 10 2017

giải ra giùm mik

21 tháng 6 2017

Ta thấy : 91 x 22 = 2002

            991 x 222 = 220002

               ...........

Dùng quy nạp ta chứng minh được:

    99...91 x 22...2 = 2...20..0...2 (2004 chữ số 2, 2005 chữ số 0)

Vậy thì a x b - 5 = 22...219...97 (2003 chữ số 2, 2005 chữ số 9)

Tổng các chữ số của a x b - 5 là: 2 x 2003 + 1 + 9 x 2005 + 7 = 22059 chia hết 3

Vậy a x b - 5 chia hết cho 3.

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)