cho S=23!+29!+-15!chứng minh rằng:
a)S chia hết cho 11
b)S chia hết cho 110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do 19!; 23! và 17! đều có chứa thừa số 11
=> 19! chia hết cho 11; 23! chia hết cho 11; 17! chia hết cho 11
=> S = 19! + 23! - 17! chia hết cho 11 (đpcm)
b) Do 19!; 23! và 17! đều có chứa thừa số 10
=> 19! chia hết cho 10; 23! chia hết cho 10; 17! chia hết cho 10
=> S = 19! + 23! - 17! chia hết cho 10
Kết hợp câu trên => S = 19! + 23! - 17! chia hết cho cả 11 và 10
Mà (11;10)=1 => S chia hết cho 110 (đpcm)
a) Do 19!; 23! và 17! đều có chứa thừa số 11
=> 19! chia hết cho 11; 23! chia hết cho 11; 17! chia hết cho 11
=> S = 19! + 23! - 17! chia hết cho 11 (đpcm)
b) Do 19!; 23! và 17! đều có chứa thừa số 10
=> 19! chia hết cho 10; 23! chia hết cho 10; 17! chia hết cho 10
=> S = 19! + 23! - 17! chia hết cho 10
Kết hợp câu trên => S = 19! + 23! - 17! chia hết cho cả 11 và 10
Mà (11;10)=1 => S chia hết cho 110 (đpcm)
+, Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times11\times...\times23\right)+\left(1\times2\times...\times11\times...\times19\right)-\left(1\times2\times...\times11\times...\times15\right)\)
\(B=11\times\left[\left(1\times2\times...\times10\times12\times...\times23\right)+\left(1\times2\times...\times10\times12\times...\times19\right)-\left(1\times2\times...\times10\times12\times...\times15\right)\right]\)
\(\Rightarrow B⋮11\)
+, Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times10\times11\times...\times23\right)+\left(1\times2\times...\times10\times11\times...\times19\right)-\left(1\times2\times...\times10\times11\times...\times15\right)\)
\(B=11\times10\times\left[\left(1\times2\times...\times9\times12\times...\times23\right)+\left(1\times2\times...\times9\times12\times...\times19\right)-\left(1\times2\times...\times9\times12\times...\times15\right)\right]\)
\(B=110\times\left[\left(1\times2\times...\times9\times12\times...\times23\right)+\left(1\times2\times...\times9\times12\times...\times19\right)-\left(1\times2\times...\times9\times12\times...\times15\right)\right]\)
\(\Rightarrow B⋮110\)
+,Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times5\times...\times23\right)+\left(1\times2\times...\times5\times...\times19\right)-\left(1\times2\times...\times5\times...\times15\right)\)
\(B=5\times\left[\left(1\times2\times...\times4\times6\times...\times23\right)+\left(1\times2\times...\times4\times6\times...\times19\right)-\left(1\times2\times...\times4\times6\times...\times15\right)\right]\)
\(\Rightarrow B⋮5\)
~ Chúc bạn học tốt ~!
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự
B=23!+12!+15!
=1.2.3.4.5.6.7.8.9.10.11....23+.1.2.3.4.5.6.7.8.9.10.10.12+1.2.3.4.5.6.7.8.9.11....15
ta thấy mỗi h tên đều có thua số 11 (1)
=>tổng trên chia hết cho 11.
=>B chia hết cho 11 (dccm)
ta thấy mỗi h trên đều có thừa số 10. (2)
tu 1 va 2
=> 23!+12!+15! chia hết cho (10.11)
=> 23!+12!+15! chia hết cho 110
=> B chia hết cho 110 (dccm)
a)B =23!+19!-15!.
vì 23 ! , 19! ,15! đều B chia hết cho 11 => 23!+19!-15!. chia hết cho 11 hay B chia hết cho 11
b) tương ự như a)
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)
a)23!+29!-15!
=1.2.3.4....10.11+1.2.3.4.....10.11-1.2.3.4.....10.11...15
Ta thấy ở 3 số hạng trên đều có thừa số 11 nên 23!+29!-15! chia hết cho 11
b)tương tự