K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

Chứng minh câu a và câu b

Gọi H là giao điểm của DE và AL.

Ta có : DE vuông góc AL tại H (giả thiết) => góc H1 = góc H= 90 độ

Xét tam giác ADH và tam giác AEH có : 

AH là cạnh chung ; góc H1 = H2 = 90 độ (cmt) ; góc A1 = A2 (tia AL là phân giác của góc A)

=> tam giác ADH = tam giác AEH (g.c.g) => AD = AE (đpcm) ; HD = HE; góc D = góc E1

Gọi T là giao điểm của hai đường thẳng BB' và AL.

Ta có : BB' // DE (giả thiết). Mà DE vuông góc AL tại H (giả thiết) => BB' vuông góc AL tại T => góc T1 = T2 = 90 độ.

Xét tam giác ABT và tam giác AB'T có :

góc A1 = A2 (tia AL là phân giác của góc A) ; AT là cạnh chung ; góc T1 = T2 = 90 độ.

=> tam giác ABT = tam giác AB'T (g.c.g) => AB = AB' (2 cạnh tương ứng)

Ta có: BD = AD - AB = AE - AB' = B'E (1) (do AD = AE và AB = AB' - chứng minh trên)

Trên đoạn thẳng DE lấy điểm V sao cho BV // AC .

Xét tam giác BVB' và tam giác EB'V có: 

góc V1 = B'2 (so le trong do BV // AC);  B'V là cạnh chung; góc V2 = B'3 (so le trong do BB' // DE)

=> tam giác BVB' = tam giác EB'V (g.c.g) => BV = B'E (2 cạnh tương ứng) (2)

Xét tam giác BMV và tam giác CME có : 

góc M1 = M2 (đối đỉnh); MB = MC (M là trung điểm BC); góc B2 = góc C (so le trong do BV // AC)

=> tam giác BMV = tam giác CME (g.c.g) => CE = BV (2 cạnh tương ứng) (3)

Từ (1) và (2) và (3) => BD = B'E = BV = CE (đpcm)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED
=>BA=BE

b: BA=BE

DA=DE

=>BD là đường trung trực của AE
c: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADK=góc EDC

=>ΔDAK=ΔDEC

=>DK=DC>DA

d: BK=BC

DK=DC

=>BD là trung trực của CK

=>BD vuông góc CK

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath