cho B = 5+52+53+.......................+596
a)tính B rồi tìm số dư khi chia 597 cho 4
b) CMR B chia hết cho 30
c) tìm chữ số tận cùng của B
d) tìm số dư khi chia B cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin chào bạn Lương Thị Loan
chúng mik kết bạn nha
mik xin lỗi mik ko thể kết bạn với bạn được vì mik đã hết lượt rùi
Gọi số phải tìm là abcdeghik
Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12
Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0
Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0
Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0
Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0
Ta có 120000h chia hết cho 7 nên h = 3
Ta có 1200003i chia hết cho 8 nên i = 2
Ta có 12000032k chia hết cho 9 nên k = 1
Vậy, số đó là 120000321
Gọi số cần tìm là abc. Ta có abc+1 chia hết cho 2,3,4,5,6.
2=2
3=3
4=2^2
5=5
6=2.3. BCNN(2,3,4,5,6)=2^2.3.5=60. =>abcEB(60)=0,60,...
Vì abc+1 lớn nhất nên abc+1=960 =>abc=959.
goi thương cuối cung là x , số cần tìm là ab5
thương tìm dc cộng 9 thì chia hết cho 9 nên thương dó có dạng 9x-9
thương tìm dược cộng 8 thì chia hết cho 8 nên thương có dang \(\left(9x-9\right).8-8\)
số dó cong thêm 7 thì dc 1 số chia hết cho 7 nên \(\left[\left(9x-9\right).8-8\right].7-7=\)ab5
suy ra 504x-567=ab5 dk x<=3)
nen 504x có chữ só tận cùng =2 suy ra x= 3
nên số cần tìm 945
nguồn bạn cùng lớp
Lời giải:
$A=3-3^2+3^3-3^4+....-3^{2010}+3^{2011}$
$3A=3^2-3^3+3^4-3^5+...-3^{2011}+3^{2012}$
$\Rightarrow A+3A=3^{2012}+3$
$\Rightarrow 4A=3^{2012}+3$
$\Rightarrow A=\frac{3^{2012}+3}{4}$
b.
Từ phần a suy ra $4A-3=3^{2012}$
Do đó để $4A-3=81^x$ thì $3^{2012}=81^x$
$\Rightarrow 81^{503}=81^x$
$\Rightarrow x=503$
c.
$A=3+(-3^2+3^3-3^4)+(3^5-3^6+3^7)+(-3^8+3^9-3^{10})+...+(3^{2009}-3^{2010}+3^{2011})$
$=3+3^2(-1+3-3^2)+3^5(1-3+3^2)+3^8(-1+3-3^2)+...+3^{2009}(1-3+3^2)$
$=3+3^2(-7)+3^5.7+3^8(-7)+...+3^{2009}(-7)$
$=3+7(-3^2+3^5-3^8+....+3^{2009})$
$\Rightarrow A$ chia 7 dư 3.
d.
$4A=3^{2012}+3$
Có: $3^2\equiv -1\pmod {10}$
$\Rightarrow 3^{2012}=(3^2)^{1006}\equiv 1\pmod {10}$
$\Rightarrow 3^{2012}+3\equiv 4\pmod {10}$
$\Rightarrow 4A$ có tận cùng là 4
$\Rightarrow A$ có tận cùng là 1.
gọi cần tìm là n (100 <n<999) ta có
n-1 chia hết 2 (n-1)+2 chia hết 2 n+1(vì 2-1=1) chia hết 2
n-2 chia hết 3=> (n-2)+3 chia hết 3=> n+1(vì 3-2=1)chia hết 3
n-3 chia hết 4 (n-3)+4 chia hết 4 n+1 chia hết 4
n-4 chia hết 5 (n-4)+5 chia hét 5 n+1 chia hết 5
n-5 chia hết 6 (n-5)+6 chia hết 6 n+1 chia hết 6
=>n+1 thuộc BC(2,3,4,5,6)
2=2, 3=3, 4=22, 5=5,6=2.3 => BCNN(2,3,4,5,6)=22.3.5=60
B(2,3,4,5,6)=BC(60)={0,60,120,180,...,960,1020,...}
n=-1,59,119,...,959,1019,...
vì 100<n<999 nên n=959