Viết chương trình tìm số N nhỏ nhất thỏa mãn biểu thức sau 1*2*3*...*N>120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 1:
uses crt;
var a:array[1..100]of integer;
i,n,min:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
min:=a[1];
for i:=1 to n do
if min>a[i] then min:=a[i];
writeln(min);
readln;
end.
Đề 2:
uses crt;
var a:array[1..100]of integer;
i,n,max:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
max:=a[1];
for i:=1 to n do
if max<a[i] then max:=a[i];
writeln(max);
readln;
end.
a)
program Tinh_S;
var
n, S: integer;
i: integer;
begin
write('Nhap gia tri cua n (30 <= n <= 90): ');
readln(n);
S := 0;
if (n >= 30) and (n <= 90) then
begin
for i := 1 to n do
S := S + i;
writeln('Gia tri cua bieu thuc S la: ', S);
end
else
writeln('Gia tri cua n khong hop le!');
readln;
end.
b)
program Tim_n;
var
n, S: integer;
begin
for n := 30 to 90 do
begin
S := 0;
for i := 1 to n do
S := S + i;
if S > 1000 then
begin
writeln('Gia tri cua n la: ', n);
break;
end;
end;
readln;
end.
a)program Tinh_S;
var n,s,i:longint;
begin
s := 0;
write('Nhap n (30 <= n <= 90): ');
readln(n);
for i := 1 to n do
begin
s := s + i;
end;
writeln('Tong S la: ', s);
end.
b) program Tim_N;
var n,s,i: longint;
begin
s := 0;
n := 1;
while s <= 1000 do
begin
s := s + n;
n := n + 1;
end;
writeln('Gia tri n can tim la: ', n-1);
end.
a: Khi m=1 thì pt sẽ là: x+x-3=6x-6
=>6x-6=2x-3
=>4x=3
=>x=3/4
b: m^2x+m(x-3)=6(x-1)
=>x(m^2+m-6)=-6+3m=3m-6
=>x(m+3)(m-2)=3(m-2)
Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0
=>m<>-3 và m<>2
=>x=3/(m+3)
\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)
\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)
\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)
Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27
=>4m^2+36m+81=0
=>m=-9/2
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
đề sai vì nếu n chia được cho 150 và khác 0 thì n≥150 mà 120 chia được cho n khác 0 n≤120 mà lớn hơn 150 và bé hơn 120 với n khác 0 mà ko có số nào như vậy cả vậy nên đề sai
Var i,p:integer;
Begin
i:=0;
p:=1;
While p<=120 do
Begin
i:=i+1;
p:=p*i;
End;
Write('So can tim la ',i);
Readln;
End.