\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}...\frac{1}{3^{10}}CMR:C< \frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $\frac{1}{6} + \frac{3}{2} + \frac{1}{2} = \frac{1}{6} + \left( {\frac{3}{2} + \frac{1}{2}} \right) = \frac{1}{6} + \frac{4}{2} = \frac{1}{6} + \frac{{12}}{6} = \frac{{13}}{6}$
b) $\frac{3}{8} + \frac{1}{2} + \frac{1}{8} = \left( {\frac{3}{8} + \frac{1}{8}} \right) + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{2}{2} = 1$
c) $\frac{2}{5} + \frac{6}{{10}} + \frac{3}{5} = \frac{2}{5} + \frac{3}{5} + \frac{3}{5} = \frac{{2 + 3 + 3}}{5} = \frac{8}{5}$
a) $\frac{1}{{10}} + \frac{3}{{10}} = \frac{{1 + 3}}{{10}} = \frac{4}{{10}} = \frac{2}{5}$
b) $\frac{5}{{12}} + \frac{1}{{12}} = \frac{{5 + 1}}{{12}} = \frac{6}{{12}} = \frac{1}{2}$
c) $\frac{3}{2} + \frac{1}{2} = \frac{{3 + 1}}{2} = \frac{4}{2} = 2$
a: \(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{13+\dfrac{13}{2}+\dfrac{13}{3}+\dfrac{13}{4}}{17-\dfrac{17}{2}+\dfrac{17}{3}-\dfrac{17}{4}}\)
\(=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}\cdot\dfrac{17\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{13\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)}=\dfrac{17}{13}\)
b: \(\dfrac{0.125-\dfrac{1}{5}+\dfrac{1}{7}}{0.375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0.2}{\dfrac{3}{4}+0.5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)
\(=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}=\dfrac{1}{3}+\dfrac{2}{3}=1\)