Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{2}{3}+\frac{3}{4}+\frac{5}{6}\)
\(=\frac{8+9+10}{12}\)
\(=\frac{27}{12}=\frac{9}{4}\)
b)\(\frac{15}{8}-\frac{7}{12}+\frac{5}{6}\)
\(=\frac{45-14+20}{24}\)
\(=\frac{51}{24}=\frac{17}{8}\)
2)
a)\(\frac{2}{5}+\frac{7}{13}+\frac{3}{5}+\frac{1}{7}\)
\(=\frac{2}{5}+\frac{3}{5}+\frac{7}{13}+\frac{1}{7}\)
\(=1+\frac{7}{13}+\frac{1}{7}\)
\(=\frac{20}{13}+\frac{1}{7}\)
\(=\frac{153}{91}\)
Tí tớ trả lời tiếp
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
a, \(A=\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)
\(A=\left(\frac{2}{5}-\frac{3}{4}\right)+\left(\frac{-1}{6}-\frac{-2}{3}\right)\)
\(A=\left(\frac{8}{20}-\frac{15}{20}\right)+\left(\frac{-3}{18}-\frac{-12}{18}\right)\)
\(A=\frac{-7}{20}+\frac{1}{2}\)
\(\Rightarrow A=\frac{-7}{20}+\frac{10}{20}=\frac{3}{20}\)
b, \(B=\frac{7}{10}-\frac{-3}{4}+\frac{-5}{6}-\frac{1}{5}+\frac{-2}{3}\)
\(B=\left(\frac{7}{10}-\frac{1}{5}\right)+\left(\frac{-5}{6}+\frac{-2}{3}\right)-\frac{-3}{4}\)
\(B=\left(\frac{7}{10}-\frac{2}{10}\right)+\left(\frac{-5}{6}+\frac{-4}{6}\right)-\frac{-3}{4}\)
\(B=\frac{1}{2}+\frac{-3}{2}-\frac{-3}{4}\)
\(B=\frac{2}{4}+\frac{-6}{4}-\frac{-3}{4}\)
\(\Rightarrow B=\frac{2+-6+3}{4}=\frac{-1}{4}\)
c, \(C=\frac{\left(\frac{1}{2}-0,75\right)\times\left(0,2-\frac{2}{5}\right)}{\frac{5}{9}-1\frac{1}{12}}\)
\(C=\frac{\left(\frac{1}{2}-\frac{3}{4}\right)\times\left(\frac{1}{5}-\frac{2}{5}\right)}{\frac{5}{9}-\frac{1\times12+1}{12}}\)
\(C=\frac{\left(\frac{2}{4}-\frac{3}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{5}{9}-\frac{13}{12}}\)
\(C=\frac{\left(\frac{-1}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{60}{108}-\frac{117}{108}}\)
\(C=\frac{\frac{1}{20}}{\frac{-19}{36}}=\frac{1}{20}\div\frac{-19}{36}=\frac{1}{20}\times\frac{36}{-19}\)
\(\Rightarrow C=\frac{36}{-380}=\frac{-9}{95}\)
d, \(D=\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{4}}{-1-\frac{3}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{56}{84}+\frac{24}{84}-\frac{21}{84}}{\frac{-10}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{59}{84}}{\frac{-40}{28}+\frac{2}{28}}=\frac{59}{84}\div\frac{-37}{28}=\frac{59}{84}\times\frac{28}{-37}\)
\(\Rightarrow D=\frac{1652}{-3108}=\frac{-59}{111}\)
a)\(A=\frac{17}{23}.\frac{8}{16}.\frac{23}{17}.\left(-80\right).\frac{3}{4}\)
\(A=\left(\frac{17}{23}.\frac{23}{17}\right).\left(\frac{8}{16}.\frac{3}{4}\right).\left(-80\right)\)
\(A=\frac{3}{8}.\left(-80\right)\)
\(A=-30\)
b)\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).0\)
\(C=0\)