K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

a) \(x^2-2x-6=0\) 

\(\Leftrightarrow x^2-2x+1-7=0\)

\(\Leftrightarrow\left(x-1\right)^2=7\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{7}\\x-1=-\sqrt{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{7}+1\\x=1-\sqrt{7}\end{cases}}\)

b) \(x^2+2x+4=0\)

\(\Leftrightarrow x^2+2x+1+3=0\)

\(\Leftrightarrow\left(x+1\right)^2=-3\) ( unreasonable )

Therefore: x doesn't excist

29 tháng 9 2016

exist

a: =>3^x=3^4*3=3^5

=>x=5

b: =>\(2^{x+1}=2^5\)

=>x+1=5

=>x=4

c: \(\Leftrightarrow3^{x+2-3}=3\)

=>x-1=1

=>x=2

d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)

=>x=4 hoặc x=-4

e: (2x-1)^4=81

=>2x-1=3 hoặc 2x-1=-3

=>2x=4 hoặc 2x=-2

=>x=-1 hoặc x=2

f: (2x-6)^4=0

=>2x-6=0

=>x-3=0

=>x=3

18 tháng 8 2023

a) \(3^x=81\cdot3\)

\(\Rightarrow3^x=3^4\cdot3\)

\(\Rightarrow3^x=3^5\)

\(\Rightarrow x=5\)

b) \(2^{x+1}=32\)

\(\Rightarrow2^{x+1}=2^5\)

\(\Rightarrow x+1=5\)

\(\Rightarrow x=4\)

c) \(3^{x+2}:27=3\)

\(\Rightarrow3^{x+2}:3^3=3\)

\(\Rightarrow3^{x+2-3}=3\)

\(\Rightarrow3^{x-1}=3\)

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

d) \(2x^2=32\)

\(\Rightarrow x^2=16\)

\(\Rightarrow x^2=4^2\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

e) \(\left(2x-1\right)^4=81\)

\(\Rightarrow\left(2x-1\right)^4=3^4\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

f)  \(\left(2x-6\right)^4=0\)

\(\Rightarrow2x-6=0\)

\(\Rightarrow2x=6\)

\(\Rightarrow x=6:2\)

\(\Rightarrow x=3\)

23 tháng 12 2021

a.\(2^x-2^4.2^7.32=0\)
\(2^x-2^{16}=0\)
\(=>x=16\)
b.\(3^x+3^{x+2}=270\)
\(3^x+3^x.3^2=270\)
\(3^x.10=270\)
\(3^x=27\)
\(=>x=3\)
 

23 tháng 12 2021

bạn ơi giải chi tiết đi đừng gộp

25 tháng 10 2021

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

7 tháng 11 2021

\(a,\Leftrightarrow6x-9+4-2x=-3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-3-6x\right)\left(2x-3+6x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-3-4x=0\\8x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{8}\end{matrix}\right.\)

`#3107.101107`

`1.`

`a,`

`(2x - 3)^2 = |3 - 2x|`

`=> (2x - 3)^2 = |2x - 3|`

`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)

Vậy, `x \in {3/2; 2; 1}`

`b,`

`(x - 1)^2 + (2x - 1)^2 = 0`

`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy, `x \in {1; 1/2}`

`c,`

`5 - x^2 = 1`

`=> x^2 = 4`

`=> x^2 = (+-2)^2`

`=> x = +-2`

Vậy, `x \in {-2; 2}`

`d,`

`x - 2\sqrt{x} = 0`

`=> x^2 - (2\sqrt{x})^2 = 0`

`=> x^2 - 4x = 0`

`=> x(x - 4) = 0`

`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy, `x \in {0; 4}`

`g,`

`(x - 1) + 1/7 = 0`

`=> x - 1 + 1/7 = 0`

`=> x - 6/7 = 0`

`=> x = 6/7`

Vậy, `x = 6/7.`

`@` `\text {Ans}`

`\downarrow`

`a,`

`(2x - 1)^2 - 25 = 0`

`<=> (2x - 1)^2 = 25`

`<=> (2x - 1)^2 = (+-5)^2`

`<=>`\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy, `S = {-2; 3}`

`b,`

`8x^3 - 50x = 0`

`<=> x(8x^2 - 50) = 0`

`<=>`\(\left[{}\begin{matrix}x=0\\8x^2-50=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\8x^2=50\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x^2=\dfrac{25}{4}\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=0\\x=\pm\dfrac{5}{2}\end{matrix}\right.\)

Vậy, `S = {-5/2; 0; 5/2}.`

17 tháng 7 2023

a) (2x - 1)² - 25 = 0

(2x - 1)² - 5² = 0

(2x - 1 - 5)(2x - 1 + 5) = 0

(2x - 6)(2x + 4) = 0

2x - 6 = 0 hoặc 2x + 4 = 0

*) 2x - 6 = 0

2x = 6

x = 3

*) 2x + 4 = 0

2x = -4

x = -2

Vậy x = -2; x = 3

b) 8x³ - 50x = 0

2x(4x² - 25) = 0

2x[(2x)² - 5²] = 0

2x(2x - 5)(2x + 5) = 0

2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0

*) 2x = 0

x = 0

*) 2x - 5 = 0

2x = 5

x = 5/2

*) 2x + 5 = 0

2x = -5

x = -5/2

Vậy x = -5/2; x = 0; x = 5/2

5 tháng 9 2021

a. (x - 22) - 1 = 0

<=> x - 4 - 1 = 0

<=> x = 5

b. 4 - (x - 2)2 = 0

<=> 22 - (x - 2)2 = 0

<=> (2 - x + 2)(2 + x - 2) = 0

<=> x(4 - x) = 0

<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

5 tháng 9 2021

d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)

<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)

<=> (x - 5)(5x + 1) = 5x2 - 80

<=> 5x2 + x - 25x - 5 = 5x2 - 80

<=> 5x2 - 5x2 + x - 25x = -80 + 5

<=> -24x = -75

<=> x = \(\dfrac{25}{8}\)

19 tháng 11 2021

a)x=x

b)x=x^1

26 tháng 12 2022

\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)

\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)