chung minh rang 1+1=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thiếu đè bài rồi
đề bài là chứng minh rằng ƯC [ 2n+1 ,4n+3] =1
\(A=1^3+2^3+3^3+4^3=1+8+27+64=100\)
Vì 100=102
=>A là số chính phương (đpcm)
A= \(1^3+2^3+3^3+4^3\)
A=1+8+27+54=90
VÌ 90=32
Vậy A là SCP (đpcm)
Đặt \(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}\)
Ta thấy:
\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3}< \dfrac{1}{2.3};...;\dfrac{1}{100!}=\dfrac{1}{1.2...100}< \dfrac{1}{99.100}\)
Cộng vế với vế ta được:
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)
Vậy \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\) (Đpcm)
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+\dfrac{1}{100!}\)
\(=\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+\left(\dfrac{1}{3!}-\dfrac{1}{4!}\right)+...+\left(\dfrac{1}{99!}-\dfrac{1}{100!}\right)\)
\(=1-\dfrac{1}{100!}< 1\)
Vì 1+1+1
khi lam toan sai