Tìm min của \(2x+\sqrt{4-2x^2}\)
Giúp mình với mình cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2\le\left(\sqrt{2}^2+1^2\right)\left(2x^2+4-2x^2\right)=12\)
\(\Rightarrow\left|A\right|\le\sqrt{12}=2\sqrt{3}\)
\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)
Từ đó tìm được Max Min
Điều kiện x \(\ge\frac{1}{4}\)
Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))
=> x = a2 + \(\frac{1}{4}\)
=> PT <=> 2a2 + \(\frac{1}{2}\)+ \(\sqrt{a^2+\frac{1}{4}+a}\)= 2
<=> \(\sqrt{a^2+\frac{1}{4}+a}\)= \(\frac{3}{2}-2a\)
<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2
<=> 4a4 - 7a2 - a + 2 = 0
<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0
<=> a = 0,5
<=> x = 0,5
Bài 1 :
=-5(x^2+4/5x+19/25)
=-5(x^2+2x.2/5+4/25+3/5)
=-5(x+2/5)^2-3
Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3
Vậy Min là-3
Ta thấy hàm số này chỉ có cực đại. Và bị chặn 2 đầu. Vậy đầu chặn nào bé hơn chính là min
Vì 4 - 2x2 \(\ge0\)
\(-\sqrt{2}\le x\le\sqrt{2}\)
Tại x = \(\sqrt{2}\) thì hàm số = \(2\sqrt{2}\)
Tại x = -\(\sqrt{2}\) thì hàm số = - \(2\sqrt{2}\)
Vậy min là - \(2\sqrt{2}\)tại x = - \(\sqrt{2}\)