cho x>=y>=z>0.chứng minh \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}>=x^2+y^2+z^2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
22 tháng 5 2017
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)
TL
0
NV
Nguyễn Việt Lâm
Giáo viên
14 tháng 5 2020
\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)
\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)
\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z\)
mk không bít
ai đây