chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2>=2xy\Rightarrow\frac{x}{x^2+y^2}< =\frac{x}{2xy}=\frac{1}{2y}\)(1)
\(y^2+z^2>=2yz\Rightarrow\frac{y}{y^2+z^2}< =\frac{y}{2yz}=\frac{1}{2z}\)(2)
\(x^2+z^2>=2xz\Rightarrow\frac{z}{x^2+z^2}< =\frac{z}{2xz}=\frac{1}{2x}\)(3)
từ (1) (2) (3)\(\Rightarrow\frac{x}{x^2+y^2}+\frac{y}{y^2+z^2}+\frac{z}{x^2+z^2}< =\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2x}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)(đpcm)
\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)
\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)
=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)
=> dpcm
Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)
\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)
\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)
Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)
\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)
\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Áp dụng BĐT Cauchy cho 3 số:
\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)
\(\Rightarrow9+x^2+y^2+z^2\ge12\)
hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)
\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự
\(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3;\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế theo vế
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
Áp dụng BĐT Cô-si a2+b2>=2ab, ta đc:
x^2+y^2>=2.x.y=2xy
x^2+1>=2.x.1=2x
y^2+1>=2.y.1=2y
Cộng vế theo vế ba BĐT trên, ta đc: x^2+y^2+x^2+1+y^2+1>=2xy+2x+2y
(=) 2(x^2+y^2+1)>=2(xy+x+y)
(=)x^2+y^2+1>=xy+x+y.
Ta có : x^2 + y^2 +1 >= xy +x +y
<=> 2(x^2+y^2 +1) >=2 ( xy+x+y) (*nhân 2 vào cả 2 vế)
<=> 2x^2+2y^2+2 >= 2xy+2x+2y
<=> 2x^2+2y^2+2-2xy-2x-2y >= 0
<=> x^2-2xy+y^2+x^2-2x+1+y^2-2y+1 >=0
<=> (x-y)^2 + ( x-1)^2 +(y-1)^2 >= 0
+ Với x,y thì (x-y)^2 >= 0;(x-1)^2>=0;(y-1)^2>=0 nên ...(ghi lại dòng trên)
Vậy : x^2 +y^2+1 >= xy+x+y
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)
\(BĐT\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{x+z}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{3}{2}+3=\dfrac{9}{2}\\ \Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge9\left(1\right)\)
Áp dụng BĐT Cauchy:
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nhân vế theo vế 2 BĐT ta được
\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge3\cdot3\sqrt[3]{1}=9\)
Do đó \(\left(1\right)\) luôn đúng
Vậy ta được đpcm
Sửa đề: (x+y)(x+y+2)-2(x+1)(y+1)+2-x^2-y^2
=(x+y)^2+2(x+y)-x^2-y^2-2(xy+x+y+1)+2
=2xy+2(x+y)-2xy-2x-2y-2+2
=2(x+y)-2(x+y)-2+2
=0
=>Đẳng thức được chứng minh