\(\frac{2012+2013+2014}{2014\times2015+2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tử số = \(2012+\left(2015-2\right)x2014=2012+2014x2015-4028=2014x2015-\left(4028-2012\right)=2014x2015-2016\)
Tử số = mấu số nên kết quả =1
Mẫu số = 2014.2012.100010001 - 2012.2014.100010001 = 0
Vậy phân số trên vô nghĩa vì mẫu số bằng 0.
b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)
\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)
\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)
\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)
\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)
\(\frac{2012+2013.2015}{2014.2015+2016}=\frac{4056194}{4060226}\)
2012 + 2013 x 2014 / 2014 + 2015 - 2016
= 2012 + 2013 x 2014 / 2014 x ( 2013 + 2 ) - 2016 = 2012 + 2013 x 2014 / 2014 x 2013 + 2014 x 2 -2016 = 2012 + 2013 x 2014 / 2014 x 2013 + 2012 = 1
kết quả bằng 1. chắc chắn đấy, k mình nha
\(\frac{2012+2013+2014}{2014\cdot2015+2016}=1\)