Giair PT vo ti bang phuong phap doi nghich:
\(x+\sqrt{2-x^2}=4y^2+4y+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ <=> (x + y)y + x2 + 1 - 4y = 0 và y(x + y)2 - 2(x2 + 1 ) - 7y = 0
Chia cả 2 vế của 2 phương trình cho y, ta được hệ :
( x + y) + (x2 + 1)/y - 4 = 0 và ( x + y)2 - 2(x2 + 1)/y - 7 = 0
đặt a = x + y
b = ( x2 + 1)/y
Ta có hệ :
a + b - 4 = 0 và a2 - 2b - 7 = 0
Giải ra ta có ( x,y ) = (1,2 ) hoặc ( -2,5
\(\hept{\begin{cases}2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left(2y^2+1\right)\left(1\right)\\\sqrt{2y^2-4y+3}=5-y+\sqrt{x+4}\left(2\right)\end{cases}}\)
Từ có:
\(\left(1\right)\Leftrightarrow\left(2y^3-6y^2+6y-2\right)+\left(y-1\right)=\sqrt{1-x}+2\sqrt{1-x}-2x\sqrt{1-x}\)
\(\Leftrightarrow2\left(y-1\right)^3+\left(y-1\right)=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)
Xét hàm số: \(f\left(a\right)=a^3+a\) ta thấy hàm số này đồng biến nên từ đây ta có thể suy ra.
\(y-1=\sqrt{1-x}\)
\(\Leftrightarrow x=-y^2+2y\) thế vô (2) ta được
\(\sqrt{2y^2-4y+3}=5-y+\sqrt{-y^2+2y+4}\)
Tới đây thì không khó nữa. Bạn làm nốt nhé
Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{3x+2}=2\)
Ta có: \(\left\{{}\begin{matrix}a-b=2\\3a^3-b^3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\left(1\right)\\3a^3-b^3=4\end{matrix}\right.\)
Thay (1) vào (2) ta có:
3(b + 2)3 - b3 = 4
<=> 3(b3 + 6b2 + 12b + 8) - b3 = 4
<=> 2b3 + 6b2 + 12b + 4 = 0
<=> b3 + 3b2 + 6b + 2 = 0
Đến đây chắc phải dùng công thức nghiệm tổng quát, vô lý @@
ban giai sai roi, bài này ra no là (\(-46-18\sqrt{6}\);\(-46+18\sqrt{6}\);-1)
ĐK : \(x\ge-2;y\ge-3\)
pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)
<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)
<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)
<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.
<=> \(x=y+1\)(1')
pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')
Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)
Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)
Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)
<=> \(2\le\sqrt{y+3}\le3\)
<=> \(4\le y+3\le9\)
<=> \(1\le y\le6\)(tm)
Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)
Vậy tập nghiệm \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)
\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)
đặt x+2y=a ; xy=b
\(hpt\Leftrightarrow\hept{\begin{cases}a+b=6\\a^2-5b=6\end{cases}\Leftrightarrow\hept{\begin{cases}b=6-a\\a^2+5a-36=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=4;b=2\\a=-9;b=15\end{cases}}}\)
a/ \(\hept{\begin{cases}x+2y=4\\x.2y=4\end{cases}}\)=>x và 2y là nghiệm của pt \(X^2-4X+4=0\Rightarrow X=2\) hay x=2y=2 <=>x=2;y=1
b/\(\hept{\begin{cases}x+2y=-9\\x.2y=15\end{cases}}\) tương tự TH a/ bạn tự giải nốt