Tổng của 10 số tự nhiên liên tiếp đầu tiên
Các bạn giải thích rõ cho mình!@#
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
a) Gọi 3 số tự nhiên liên tiếp là : a; a+1;a+2
Tổng: a+a+1+a+2
=> 3a + 3 chia hết cho 3 (dpcm)
b) Gọi 4 số tự nhiên liên tiếp là : a ; a + 1 ; a+2 ; a+3
Tổng : a + a + 1 + a + 2 + a +3
= 4a + 6 không chia hết cho 4
#)Giải :
Theo đề bài, ta có : a+(a+1)+(a+2)
= a+a+1+a+2
= (a+a+a) + (1+2)
= 3a + 3
Vì 3a và 3 cùng chia hết cho 3 => a+(a+1)+(a+2) chia hết cho 3
Vậy tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Theo đề bài, ta có : b+(b+1)+(b+2)+(b+3)
= b+b+1+b+2+b+3
= (b+b+b+b) + (1+2+3)
= 4b + 6
Vì 4b chia hết cho 4 và 6 không chia hết cho 4=> b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
a) Gọi hai số tự nhiên liên tiếp là a , a + 1
Nếu a chia hết cho 2 thì bài toán đã được giải
Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán đã được giải
Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3
Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3
Bài này mik học rồi nên mik chắc chắn đúng luôn
a)Gọi 3 số tự nhiên liên tiếp là:a;a+1;a+2
Tổng 3 số tự nhiên liên tiếp là:S=a+a+1+a+2=3a+3
Vì 3 chia hết cho 3 nên 3a chia hết cho 3=>3a chia hết cho 3
hay S chia hết cho 3
Vậy _________________________
Bạn tự kết luận nhé!
Câu b tương tự chỉ là nó không chia hết cho 4 thôi!
a)Ta gọi 3 số tự nhiên liên tiếp là:a,a+1,a+2(a thuộc N)
Ta có:a+(a+1)+(a+2)=3a+3 chia hết cho 3 vì 3a chia hết cho 3,3 chia hết cho a
Suy ra tổng 3 số tự nhiên liên tiếp chia hết cho 3.
b)Tương tự như câu a
Mười số tự nhiên liên tiếp bất kì có hàng đơn vị đủ 10 chữ số từ 0 đến 9
Tổng hàng đơn vị là chữ số : (0 + 9) x 10 : 2 = 45
Vậy chữ số hàng đơn vị của tổng 10 số tự nhiên liên tiếp là 5
0+1+2+3+4+5+6+7+8+9=45
Vì 10 ko phải là số tự nhiên
k mình nha
tại sao vậy bạn??