với a b c là 3 số bất kì cm a2+b2+c2+3≥2(a+b+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu:
3(a2 + b2 + c2) - (a + b + c)2
= 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ac
= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac
= (a - b)2 + (b - c)2 + (c - a)2 ≥ 0
(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c
Nên 3(a2 + b2 + c2) ≥ (a + b + c)2.
Đáp án cần chọn là: C
a)Ta có:
\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)
Do \(\left(a-b\right)^2\ge0\),nên\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b)Xét \(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)
Khai triển và rút gọn ta được:\(3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).
b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)
. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).
Vậy : (a + b + c)\(^2\) ≤ 3( a\(^2\) + b\(^2\) + c\(^2\)).
Cách khác : Biến đổi tương đương
a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng
b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Ta có:
\(\left(a-1\right)^2\ge0;\forall a\) (1)
\(\left(b-1\right)^2\ge0;\forall b\) (2)
\(\left(c-1\right)^2\ge0;\forall c\) (3)
Cộng từng vế (1);(2);(3) ta được:
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)
\(\Leftrightarrow a^2+b^2+c^2-2\left(a+b+c\right)+3\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) ( đfcm )
Ta có:
(a−1)2≥0;∀a(a−1)2≥0;∀a (1)
(b−1)2≥0;∀b(b−1)2≥0;∀b (2)
(c−1)2≥0;∀c(c−1)2≥0;∀c (3)
Cộng từng vế (1);(2);(3) ta được:
(a−1)2+(b−1)2+(c−1)2≥0(a−1)2+(b−1)2+(c−1)2≥0
⇔a2−2a+1+b2−2b+1+c2−2c+1≥0⇔a2−2a+1+b2−2b+1+c2−2c+1≥0
⇔a2+b2+c2−2(a+b+c)+3≥0⇔a2+b2+c2−2(a+b+c)+3≥0
⇔a2+b2+c2+3≥2(a+b+c)⇔a2+b2+c2+3≥2(a+b+c) ( đpcm ).