chứng minh rằng:
A= 4+22+23+..............+220 là 1 luỹ thừa của 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lũy thừa bậc n của a : kí hiệu là an là tích của n thừa số a
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
\(A=1-3+3^2-3^3+.....-3^{2009}+3^{2010}\)
\(\Rightarrow3A=3-3^2+3^3-......-3^{2010}+3^{2011}\)
\(\Rightarrow3A+A=4A=1+3^{2011}\)
\(\Rightarrow4A-1=1+3^{2011}-1=3^{2011}\)là lũy thừa của 3 ( đpcm )
\(A=4+B\)
\(\Rightarrow2B=2^3+2^4+2^5+2^6+...+2^{21}\)
\(\Rightarrow B=2B-B=2^{21}-2^2=2^{21}-4\)
\(\Rightarrow A=4+B=4+2^{21}-4=2^{21}\) (dpcm)
\(^{2^4=16}\)
sai rồi bn ơi