\(\dfrac{x-3}{7}=\dfrac{2x-7}{16}\)
mọi người giúp mik bài này vs mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-3}{7}=\dfrac{2x-7}{13}\)
\(7\left(2x-7\right)=13\left(x-3\right)\)
\(14x-49=13x-39\)
\(14x-13x=49-39\)
\(x=10\)
ĐKXĐ: \(x\ne y,x\ne-y\)
\(hpt\Leftrightarrow\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)-\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=\dfrac{5}{8}-\dfrac{3}{8}\)
\(\Leftrightarrow0=\dfrac{1}{4}\left(VLý\right)\)
Vậy hpt vô nghiệm
a) Ta có: \(\left(2x+7\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x+7\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x+7-x-3\right)\left(2x+7+x+3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\cdot\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-4;-\dfrac{10}{3}\right\}\)
b) Ta có: \(\left(4x+14\right)^2=\left(7x+2\right)^2\)
\(\Leftrightarrow\left(4x+14\right)^2-\left(7x+2\right)^2=0\)
\(\Leftrightarrow\left(4x+14-7x-2\right)\left(4x+14+7x+2\right)=0\)
\(\Leftrightarrow\left(-3x+12\right)\left(11x+16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+12=0\\11x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-12\\11x=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{16}{11}\end{matrix}\right.\)Vậy: \(S=\left\{4;-\dfrac{16}{11}\right\}\)
(2x+7)2=(x+3)2
=>(2x+7)2-(x+3)2=0
=>(2x+7-x-3)(2x+7+x+3)=0
=>(x-4)(3x+10)=0
=>x-4=0 hoặc 3x+10=0
TH1:x-4=0=>x=4
TH2:3x+10=0=>x=-10/3
(4x+14)2=(7x+2)2
(4x+14)2-(7x+2)2=0
(4x+14-7x-2)(4x+14+7x+2)=0
(-3x+12)(11x+16)=0
TH1:-3x+12=0=>x=4
TH2:11x+16=0=>x=-16/11
a: =>4x^2-4x+1+7>4x^2+3x+1
=>-4x+8>3x+1
=>-7x>-7
=>x<1
b: \(\Leftrightarrow12x+1>=36x+12-24x-3\)
=>1>=9(loại)
a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
⇔\(7\left(x-3\right)=5\left(x+5\right)\)
⇔\(7x-21=5x+25\)
⇔\(7x-21-5x-25=0\)
⇔\(2x-46=0\)
⇔\(2x=46\)
⇔\(x=23\)
\(=>\dfrac{a}{b}\times\left(-\dfrac{2}{7}+\dfrac{5}{7}\right)=\dfrac{5}{7}\)
\(=>\dfrac{a}{b}\times\dfrac{3}{7}=\dfrac{5}{7}=>\dfrac{a}{b}=\dfrac{5}{7}:\dfrac{3}{7}=\dfrac{5}{3}\)
vậy \(\dfrac{a}{b}=\dfrac{5}{3}\)
\(\Rightarrow\dfrac{a}{b}\times\left(-\dfrac{2}{7}+\dfrac{5}{7}\right)=\dfrac{5}{7}\\ \Rightarrow\dfrac{a}{b}\times\dfrac{3}{7}=\dfrac{5}{7}\\ \Rightarrow\dfrac{a}{b}=\dfrac{5}{7}:\dfrac{3}{7}\\ \Rightarrow\dfrac{a}{b}=\dfrac{5}{3}\\ \Rightarrow a=5;b=3\)
Đặt : \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
`=>x=5k,y=3k`
Ta có : \(x^2-y^2=4=>\left(5k\right)^2-\left(3k\right)^2=4\\ =>25k^2-9k^2=4\\ =>16k^2=4\\ =>k^2=\dfrac{1}{4}\\ =>k=\pm\dfrac{1}{2}\)
\(=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Ta có:
\(\dfrac{1}{cos^2x-sin^2x}+\dfrac{2tanx}{1-tan^2x}=\dfrac{1}{cos2x}+tan2x=\dfrac{1}{cos2x}+\dfrac{sin2x}{cos2x}=\dfrac{1+sin2x}{cos2x}=\dfrac{cos2x}{1-sin2x}\)
\(\Rightarrow P=a+b=2+1=3\)
\(\dfrac{x-3}{7}=\dfrac{2x-7}{16}\)
⇒\(16\left(x-3\right)=7\left(2x-7\right)\)
⇒\(16x-48=14x-49\)
⇒\(16x-14x=-49+48\)
⇒\(2x=-1\)
⇒\(x=\dfrac{-1}{2}\)
Vậy \(x=\dfrac{-1}{2}\)
mik cảm ơn nha