chứng minh rằng trong 9 số bất kì có tổng của 5 số trong đó chia hết cho 5
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DT
1
NT
9
3 tháng 10 2016
Bạn tham khảo ở đây nhé
Bài toán 120 - Học toán với OnlineMath
9 tháng 8 2016
Ta có trong 5 số bất kỳ luôn tồn tại 3 số có tổng chia hết cho 3 .
Như vậy trong 9 số thì tồn tại 5 cặp , mỗi cặp 3 số có tổng chia hết cho 3
Mỗi cặp đồng dư 0,3,6 mod 5
Nếu 3 cặp cùng 1 lớp đồng dư ⇒ dpcm
Mà có 5 cặp ⇒ Có đầy đủ 3 lớp đồng dư ⇒ Tồn tại 5 số có tổng chia hết cho 5
LV
1
23 tháng 7 2019
Trong 17 số tự nhiên này luôn có 16 số chia cho 9 dư từ 1 đến 8 và 1 số chia hết cho 9
Chia 16 số đó thành 2 nhóm các số 9k+1;9k+2;...;9k+8
Ta dễ thấy rằng cả hai nhóm đều bao gồm 8 số và tổng cả 8 số này đều chia hêt cho 9
Do đó khi công thêm số còn lại đó là 9k thì ta sẽ được 9 số chia hết cho 9 ( ĐPCM)