K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2016

bài này hả

9 tháng 9 2016

bài này ở đâu vậy

25 tháng 9 2016

Số đó là : 

56789 . Tổng của chúng = 35

Đáp số : 56789

3 tháng 10 2016

Bạn tham khảo ở đây nhé

Bài toán 120 - Học toán với OnlineMath

9 tháng 8 2016

Ta có trong 5 số bất kỳ luôn tồn tại 3 số có tổng chia hết cho 3 .

Như vậy trong 9 số thì tồn tại 5 cặp , mỗi cặp 3 số có tổng chia hết cho 3

Mỗi cặp đồng dư 0,3,6 mod 5

Nếu 3 cặp cùng 1 lớp đồng dư ⇒ dpcm

Mà có 5 cặp ⇒ Có đầy đủ 3 lớp đồng dư ⇒ Tồn tại 5 số có tổng chia hết cho 5

6 tháng 9 2016

bạn lên mạng coi có nhiều bài tương tự á

Trong 17 số tự nhiên này luôn có 16 số chia cho 9 dư từ 1 đến 8 và 1 số chia hết cho 9

Chia 16 số đó thành 2 nhóm các số 9k+1;9k+2;...;9k+8

Ta dễ thấy rằng cả hai nhóm đều bao gồm 8 số và tổng cả 8 số này đều chia hêt cho 9

Do đó khi công thêm số còn lại đó là 9k thì ta sẽ được 9 số chia hết cho 9 ( ĐPCM)

Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng...
Đọc tiếp

Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng tỏ rằng trong đó tồn tại 1 số chia hết cho 2021 hoặc tồn tại 1 vài số có tổng chia hết cho 2021. Bài B. Cho một hình vuông cạnh bằng 5 và chia thành 25 hình vuông kích thước 1 x 1. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau. Bài C. Biết 997 là số nguyên tố lớn nhất , nhỏ hơn 1000. Chứng minh rằng tồn tại số tự nhiên có dạng 111...1 chia hết cho 997.

1
29 tháng 11 2021

Đinh Hoàng Anh lớp 6CT Lương Thế Vinh Hà Nội cơ sở A đúng kg =)))

8 tháng 4 2021

dễ thấy =))

 

8 tháng 4 2021

giải thích rõ ra chứ bạn !