K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: 

b) Ta có: ΔABN=ΔACM(cmt)

nên \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)

haizz nói rõ ràng ở bài 4 là "Các bạn giúp mk phần d và e thôi chứ ko cần làm cả bài 4 đâu" chẹp bó tay

4 tháng 4 2021

Bài 4 câu cuối khó nhưng bài 5 dễ hết mà

tui ko có tg nên mới hỏi ;-;

27 tháng 7 2016

1)Xét TG AMC vg và TG ANB vuông, có

<A chung

AB=AC(ABC cân)

=>TG AMC = TG ANB(ch-gn)

=>BN=CM(2 cạnh tương ứng)

2) Ta có TG ABN=TG ACM=>ABN=ACM

3) Ta có TG ABN=TG ACM=>AM=AN=>BM=CN(M thuộc AB, N thuộc AC)

=>TG BMH=TG CNH=>BH=CH(2 cạnh tương ứng)

=>TG BHC cân tại H

4) AM=AN(TG ABN=TG ACM)=> TGAMN cân tại A

TG AMN cân tại A có

M=N=(1800-A)/2 (1)

và TG ABC cân tại A có

B=C=(1800-A)/2 (2)

(1)(2)=>M=B MÀ 2 góc này ở vị trí đồng vị

=>MN//BC

5) ta có TG ABC cân tại A

=>AH là đường cao đồng thời là đường trung tuyến ứng với cạnh BC (H là giao điểm 2 đường cao BN,CM)

mà AD cũng là trung tuyến ứng với cạnh BC (D là trung điểm BC)

=>AH và AD trùng nhau hay A,H,D thẳng hàng

!!!!!!!CHÚC!!!MAY!!!MẮN!!!!!!!

22 tháng 12 2021

a) xét tg AMC và tg ABN có

MA=BA(gt)

CA=AN(gt)

ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)

=>(kết luận)...

b)gọi I là giao điểm của MC và BN

gọi giao điểm của BA và MI là F

vì ΔAMC=ΔABNΔAMC=ΔABNnên

ˆFMA=ˆFBIFMA^=FBI^

mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O

=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O

Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O

Mà ˆIMB+ˆMBIIMB^+MBI^=900

=>...

a: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔMBC=ΔNCB

b: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)

\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)

nên \(\widehat{ABN}=\widehat{ACM}\)

c: AM+MB=AB

AN+NC=AC

mà AB=AC

và MB=NC

nên AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

AB=AC

=>A nằm trên đường trung trực của BC(2)

IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

24 tháng 1 2021

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

31 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)

a: Xét ΔABN vuông tại N và ΔACM vuông tại M có

AB=AC
\(\widehat{BAN}\) chung

Do đó: ΔABN=ΔACM

Suy ra: BN=CM

b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có 

BC chung

MC=BN

Do đó: ΔMBC=ΔNCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có

Ab=AC

góc A chung

=>ΔANB=ΔAMC

=>BN=CM