Giải phương trình sau:
\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt {{x^2} + 3x + 1} = 3\)
\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)
\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)
Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1} = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)
b) \(\sqrt {{x^2} - x - 4} = x + 2\)
\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x = - 8\\ \Rightarrow x = - \frac{8}{5}\end{array}\)
Thay \(x = - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4} = x + 2\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = - \frac{8}{5}\)
c) \(2 + \sqrt {12 - 2x} = x\)
\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x} = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)
\( \Rightarrow x = - 2\) và \(x = 4\)
Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x} = x\) thì thấy chỉ có \(x = 4\) thỏa mãn
Vậy \(x = 4\) là nghiệm của phương trình đã cho.
d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10} \ge 0\forall x \in \mathbb{R}\)
\( \Rightarrow \sqrt {2{x^2} - 3x - 10} = - 5\) (vô lí)
Vậy phương trình đã cho vô nghiệm
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)
Phương trình trở thành:
\(a+b=\dfrac{a^2-b^2}{2}\)
\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))
\(\Leftrightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)
\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)
\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))
\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)
\(\Leftrightarrow7x^2+6x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)
\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
ĐK để phương trình có nghiệm \(3x-5\ge0\Rightarrow x\ge\frac{5}{3}\left(1\right)\)
nhẩm được \(x=2\)là nghiệm của phương trình trình ta sẽ thêm bớt vào hai vế để có thừa số chung là \(x-2\)
\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)(trục căn thức ):
\(\frac{\left(\sqrt{x^2+12}-4\right)\left(\sqrt{x^2+12}+4\right)}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{\left(\sqrt{x^2+5}-3\right)\left(\sqrt{x^2+5}+3\right)}{\sqrt{x^2+5}+3}\)
\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)\(\Leftrightarrow\left(x-2\right)\left[\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right]=0\)
1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{x^2+12}-4+3-\sqrt{x^2+5}+6-3x=0\)
\(\Leftrightarrow\dfrac{x^2-4}{\sqrt{x^2+12}+4}+\dfrac{4-x^2}{3+\sqrt{x^2+5}}+6-3x=0\)
\(\Leftrightarrow\left(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\right)\left(x-2\right)=0\left(1\right)\)
Từ phương trình suy ra \(3x-5=\sqrt{x^2+12}-\sqrt{x^2+5}>0\Rightarrow x>\dfrac{5}{3}\)
Ta có: \(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\)
\(=\left(\dfrac{1}{\sqrt{x^2+12}+4}-\dfrac{1}{3+\sqrt{x^2+5}}\right)\left(x+2\right)-3< 0\)
Khi đó \(\left(1\right)\Leftrightarrow x=2\left(tm\right)\)
Vậy phương trình đã cho có nghiệm \(x=2\)