cho tam giác ABC cân tại A, O trung điểm BC, lấy D ∈ AB, E ∈ AC sao cho ∠BOD = ∠OEC c/m: ΔOBD đồng dạng ΔECO và OB ² =EC.BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)tg OBD và Tg ECO có
g OBD = g ECO (tg ABC cân tại A )(1)
g BOD =gOEC (gt)(2)
từ (1)và (2) => Tg OBD đồng dạng Tg ECO
ð OB/EC=BD/CO=>OB*CO=EC*BD
Mà OB = CO => OB bình =EC*BD
b)ta có g DOE =180 độ -(g BOD +g EOC)
=180 độ-(g OEC +g COE)
=180độ -(180 độ -g OCE )
=g OCE =g BCA =const (3)
c) Theo câu a :Tg OBD đồng dạng Tg ECO => OD/EO=BD/CO=>OD/EO=BD/BO
=>OD*BO= EO*BD=>EO/OB =OD/BD (4)
Mặt khác :từ (3) =>g DOE =g OBD (5)
Từ (4) và (5) => tg EOD đồng dạng tg OBD
a) △OBD và △ ECO có:
+\(\widehat{OBD}=\widehat{ECO}\) (△ ABC cân tại A ) (1)
+ \(\widehat{BOD}=\widehat{OEC}\) (gt) (2)
Từ (1) và (2) => △ OBD đồng dạng △ECO
ð OB/EC = BD/CO => OB*CO = EC*BD
Mà OB = CO => OB2 = EC*BD
b) Ta có :\(\widehat{DOE}=180^0-\left(\widehat{BOD}+\widehat{EOC}\right)\)
=)\(180^0-\left(\widehat{OEC}+\widehat{COE}\right)\)
=\(180^0-\left(180^0-\widehat{OCE}\right)\)
=\(\widehat{OCE}=\widehat{BCA}=\) h/s (3)
c) Theo câu a : △ OBD đồng dạng △ ECO => OD/EO = BD/CO => OD/EO = BD/BO
=> OD*BO = EO*BD => EO/OB = OD/BD (4)
Mặt khác :từ (3) =>\(\widehat{DOE}=\stackrel\frown{OBD}\) (5)
Từ (4) và (5) => △ EOD ∼ △ OBD
d) 2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\) (1)
2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\) (2)
Từ (1) và (2) ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)
Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)
Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).
a) Tg OBD và Tg ECO có
g OBD = g ECO (tg ABC cân tại A) (1)
g BOD = g OEC (gt) (2)
(1) và (2) => Tg OBD đồng dạng Tg ECO
=>OB/EC = BD/CO => OB*CO = EC*BD.
Mà OB = CO => OBbình = EC*BD
b) Ta có: gDOE = 180 độ - (gBOD + gEOC)
= 180 độ - (gOEC + gCOE)
= 180 độ - (180 độ - gOCE)
= gOCE = gBCA = const (3)
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO =>
=> OD*BO = EO*BD => EO/OB = OD/BD (4)
Mặt khác: từ(3) =>gDOE = gOBD (5)
từ (4) và (5) => TgEOD đồng dạng TgOBD
a: Xét ΔBOD và ΔAOE có
OB/OA=OD/OE
góc BOD=góc AOE
=>ΔBOD đồng dạng với ΔAOE
b: ΔBOD đồng dạng với ΔAOE
=>góc BDO=góc AEO
=>góc CEB=góc CDA
mà góc C chung
nên ΔCEB đồng dạng với ΔCDA
a) Xét tam giác ABE và tam giác ACD có :
AB = AC ( tam giác Abc cân tại A )
AE = AD
Chung \(\widehat{BAC}\)
\(\Rightarrow\) tam giác ABE = tam giác ACD ( c-g-c )
\(\Rightarrow\hept{\begin{cases}BE=CD\left(đpcm\right)\\\widehat{ABE}=\widehat{ACD}\end{cases}}\)
Mà \(\widehat{ABE}+\widehat{OBC}=\widehat{ACD}+\widehat{OCB}\)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\) tam giác COB cân tại O \(\Rightarrow OB=OC\left(đpcm\right)\)
c) Xét tam giác AOB và tam giác AOC có :
AB = AC
BO = CO
Chung AO
\(\Rightarrow\) tam giác AOB = tam giác AOC ( c-c-c )
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
\(\Rightarrow\) OC là tia phân giác \(\widehat{BAC}\)(1)
Mà tam giác ABC cân tại A (2)
Từ (1) và (2) \(\Rightarrow\)AO là trung trực BC
Vì \(\Delta\) ABC cân tại A \(\Rightarrow\) góc DBO = góc OCE
Xét \(\Delta\) OBD và \(\Delta\) ECO có:
góc DBO = góc OCE ( cmt )
góc BOD = góc OEC ( gt )
\(\Rightarrow\) \(\Delta\) OBD đồng dạng \(\Delta\) ECO ( g-g )
\(\Rightarrow\) \(\dfrac{OB}{EC}\) = \(\dfrac{BD}{OC}\)
Mà OC = OB ( gt ) \(\Rightarrow\) \(\dfrac{OB}{EC}\) = \(\dfrac{BD}{OB}\) \(\Rightarrow\) OB2 = EC . BD