K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

Vì \(\Delta\) ABC cân tại A \(\Rightarrow\) góc DBO = góc OCE

Xét \(\Delta\) OBD và \(\Delta\) ECO có:

góc DBO = góc OCE ( cmt )

góc BOD = góc OEC ( gt )

\(\Rightarrow\) \(\Delta\) OBD đồng dạng \(\Delta\) ECO ( g-g )

\(\Rightarrow\) \(\dfrac{OB}{EC}\) = \(\dfrac{BD}{OC}\) 

Mà OC = OB ( gt ) \(\Rightarrow\)  \(\dfrac{OB}{EC}\) = \(\dfrac{BD}{OB}\) \(\Rightarrow\) OB2 = EC . BD

 

9 tháng 2 2018

a)tg OBD và Tg ECO có

g OBD = g ECO (tg ABC cân tại A )(1)

g BOD =gOEC (gt)(2)

từ (1)và (2) => Tg OBD đồng dạng Tg ECO

ð OB/EC=BD/CO=>OB*CO=EC*BD

Mà OB = CO => OB bình =EC*BD

b)ta có g DOE =180 độ -(g BOD +g EOC)

=180 độ-(g OEC +g COE)

=180độ -(180 độ -g OCE )

=g OCE =g BCA =const (3)

c) Theo câu a :Tg OBD đồng dạng Tg ECO => OD/EO=BD/CO=>OD/EO=BD/BO

=>OD*BO= EO*BD=>EO/OB =OD/BD (4)

Mặt khác :từ (3) =>g DOE =g OBD (5)

Từ (4) và (5) => tg EOD đồng dạng tg OBD

9 tháng 2 2018

ko vẽ hình à

21 tháng 4 2021

a) △OBD và △ ECO có:

+\(\widehat{OBD}=\widehat{ECO}\) (△ ABC cân tại A ) (1)

 + \(\widehat{BOD}=\widehat{OEC}\) (gt) (2)

Từ (1) và (2) => △ OBD đồng dạng △ECO

ð OB/EC = BD/CO => OB*CO = EC*BD

Mà OB = CO => OB2 = EC*BD

b) Ta có :\(\widehat{DOE}=180^0-\left(\widehat{BOD}+\widehat{EOC}\right)\)

=)\(180^0-\left(\widehat{OEC}+\widehat{COE}\right)\)

=\(180^0-\left(180^0-\widehat{OCE}\right)\)

=\(\widehat{OCE}=\widehat{BCA}=\) h/s (3)

c) Theo câu a : △ OBD đồng dạng △ ECO => OD/EO = BD/CO => OD/EO = BD/BO

=> OD*BO = EO*BD => EO/OB = OD/BD (4)

Mặt khác :từ (3) =>\(\widehat{DOE}=\stackrel\frown{OBD}\) (5)

Từ (4) và (5) => △ EOD ∼ △ OBD

23 tháng 3 2016

cho tam giác đều mà góc xOy ở đâu ra z

4 tháng 8 2016

d)  2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\)                              (1)

2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\)                                 (2)

Từ  (1)  và  (2)  ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)

Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)

Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).

3 tháng 8 2016

a) Tg OBD và Tg ECO có 
g OBD = g ECO (tg ABC cân tại A) (1) 
g BOD = g OEC (gt) (2) 
(1) và (2) => Tg OBD đồng dạng Tg ECO 
=>OB/EC = BD/CO => OB*CO = EC*BD. 
Mà OB = CO => OBbình = EC*BD 
b) Ta có: gDOE = 180 độ - (gBOD + gEOC) 
= 180 độ - (gOEC + gCOE) 
= 180 độ - (180 độ - gOCE) 
= gOCE = gBCA = const (3) 
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO => 
=> OD*BO = EO*BD => EO/OB = OD/BD (4) 
Mặt khác: từ(3) =>gDOE = gOBD (5) 
từ (4) và (5) => TgEOD đồng dạng TgOBD 

4 tháng 4 2016

lam gi co M

a: Xét ΔBOD và ΔAOE có

OB/OA=OD/OE

góc BOD=góc AOE

=>ΔBOD đồng dạng với ΔAOE
b: ΔBOD đồng dạng với ΔAOE

=>góc BDO=góc AEO

=>góc CEB=góc CDA

mà góc C chung

nên ΔCEB đồng dạng với ΔCDA

23 tháng 5 2018

A B C O D E

a) Xét tam giác ABE và tam giác ACD có :

AB = AC ( tam giác Abc cân tại A )

AE = AD

Chung  \(\widehat{BAC}\)

\(\Rightarrow\) tam giác ABE = tam giác ACD ( c-g-c )

\(\Rightarrow\hept{\begin{cases}BE=CD\left(đpcm\right)\\\widehat{ABE}=\widehat{ACD}\end{cases}}\)

Mà  \(\widehat{ABE}+\widehat{OBC}=\widehat{ACD}+\widehat{OCB}\)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\) tam giác COB cân tại O \(\Rightarrow OB=OC\left(đpcm\right)\)

c) Xét tam giác AOB và tam giác AOC có :

AB = AC

BO = CO

Chung AO

\(\Rightarrow\) tam giác AOB = tam giác AOC ( c-c-c )

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

\(\Rightarrow\) OC là tia phân giác  \(\widehat{BAC}\)(1)

Mà tam giác ABC cân tại A (2)

Từ (1) và (2) \(\Rightarrow\)AO là trung trực BC

23 tháng 5 2018

C/M là gì.Cậu viết tắt tớ khong làm được đâu