K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

() là gía trị nhỏ nhất hay là giá trị tuyệt đối?

5 tháng 9 2016

à quên () là giá trị tuyệt đối

31 tháng 7 2019

Ta có: |2,5-x| \(\ge\)0
=> |2,5-x|+5,8\(\ge\)5,8
=> A \(\ge\)5,8
=> GTNN của A là 5,8 \(\Leftrightarrow\)|2,5-x| = 0
                                    \(\Leftrightarrow\)2,5-x = 0
                                    \(\Leftrightarrow\)x = 2,5
Vậy GTNN của A là 5,8 \(\Leftrightarrow\)x = 2,5
                                     

6 tháng 1 2020

ta có /x-2/> hoặc = 0 

=> /x-2/-5 lớn hơn hoặc bằng -5 

dấu = xảy ra <=> x=2

27 tháng 7 2017

Có: \(\left(x-2y+1\right)^2\ge0\forall x;y\)

\(\left|y+1\right|\ge0\forall y\)

\(\Rightarrow\left(x-2y+1\right)^2+\left|y+1\right|\ge0\forall x;y\)

\(\Rightarrow\left(x-2y+1\right)^2+\left|y+1\right|+17\ge17\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+1\right)^2=0\\\left|y+1\right|=0\end{cases}}\)

\(\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

\(\left(x-2y+1\right)^2=0\Leftrightarrow x-2y+1=0\Leftrightarrow x-2.\left(-1\right)+1=0\Leftrightarrow x+2+1=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy GTNN của A = 17 \(\Leftrightarrow\left(x;y\right)=\left(-3;-1\right)\)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

8 tháng 11 2021

TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0