Tính nhanh:
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33x}{2009}\)
\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{1}{1}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{100}{100}-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{99}{100}=\frac{0,33x}{2009}\)
\(\Rightarrow2009.99=100.0,33x\)
\(\Rightarrow2009.99=33x\)
\(\Rightarrow2009.99:33=x\)
\(\Rightarrow2009.3=x\)
\(\Rightarrow6027=x\)
Vậy \(x=6027\)(MK KO CHẮC NÓ ĐÚNG NHÉ )
\(A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\)
\(A=\frac{3}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\right)\)
\(A=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ta có : \(\frac{1}{4}+\frac{1}{28}+....+\frac{1}{9700}=\frac{0,33x}{2009}\)
=> \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}=\frac{0.99x}{2009}\)
=> \(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)
=> \(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33x}{2009}\)
=> \(\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33x}{2009}\)
=> \(\frac{33}{100}=\frac{0,33x}{2009}\Rightarrow33.2009=100.0,33x\)
=> 33.2009 = 33x
=> x = 2009
Thanks bn nhìu nha, mình sẽ K cho bn ngay. Bn kb với mình nha.
ta có : ( -5/28 +7/4 + 8/35 ) : (- 69/20)
= ( -25/140 + 245/140 + 32/140 ) x (-20/69)
= (252/140) x (-20/69)
= (9/5) x (-20/69)
= (- 12/23)
tính nhanh:
2 x 3/7 + (2/9 - 10/7) - 5/3 x 9
= 6/7 + 2/9 - 10/7 - 5/3 x 9 = 6/7 + 2/9 - 10/7 - 15
= (6/7 - 10/7 ) + (2/9 - 135/9) = ( - 4/7 ) + (-133/9 )
= (- 36/63) + (-931/63)
= (- 967/63)
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
pt đã cho có dạng \(\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}=\frac{4}{13}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+10}=\frac{4}{13}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{4}{13}\Leftrightarrow....\)
bạn tuấn mình thấy vậy nè
Gỉa sử cho x=1 ta thấy \(\frac{1}{1\times4}\ne\frac{1}{1}-\frac{1}{4}\)
Bạn bấm máy tính thử xem dấu bằng chỉ áp dụng với 2 số tự nhiên liên tiếp thôi còn cái này cách 3 lận
giải thích giúp mình với
A = 1/4 + 1/28 + 1/70 +...+ 1/9700
A = 1/1.4 + 1/4.7 + 1/7.10 +...+ 1/97.100
3A = 3/1.4 + 3/4.7 + 3/7.10 +...+ 3/97.100
3A = 1 - 1/100
3A = 99/100
A=99/100:3=33/100
\(=\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{97.100}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)