K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

A = 1/4 + 1/28 + 1/70 +...+ 1/9700

A = 1/1.4 + 1/4.7 + 1/7.10 +...+ 1/97.100

3A = 3/1.4 + 3/4.7 + 3/7.10 +...+ 3/97.100

3A = 1 - 1/100

3A = 99/100

A=99/100:3=33/100

4 tháng 9 2016

\(=\frac{1}{1.4}+\frac{1}{4.7}+..+\frac{1}{97.100}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

30 tháng 3 2018

\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+...+\frac{1}{9700}=\frac{0,33x}{2009}\)

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33x}{2009}\)

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{1}{1}-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{100}{100}-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{99}{100}=\frac{0,33x}{2009}\)

\(\Rightarrow2009.99=100.0,33x\)

\(\Rightarrow2009.99=33x\)

\(\Rightarrow2009.99:33=x\)

\(\Rightarrow2009.3=x\)

\(\Rightarrow6027=x\)

Vậy \(x=6027\)(MK KO CHẮC NÓ ĐÚNG NHÉ )

6 tháng 3 2016

\(\frac{3}{1.4}+\frac{3}{4.7}+..+\frac{3}{97.100}=\frac{0,33x}{2009}\)

\(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}=\frac{0,33x}{2009}\)

\(1-\frac{1}{100}=\frac{0,33x}{2009}\)

\(\frac{99}{100}=\frac{0,33x}{20009}\Rightarrow2009.99=100.0,33x\)

x=6027

31 tháng 8 2016

\(A=\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)

\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\)

\(A=\frac{3}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{97.100}\right)\)

\(A=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

27 tháng 3 2018

\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+...+\frac{1}{9700}\)

\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}\)

\(=\frac{99}{100}\)

7 tháng 6 2020

Ta có : \(\frac{1}{4}+\frac{1}{28}+....+\frac{1}{9700}=\frac{0,33x}{2009}\)

=> \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}=\frac{0.99x}{2009}\)

=> \(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33x}{2009}\)

=> \(\frac{33}{100}=\frac{0,33x}{2009}\Rightarrow33.2009=100.0,33x\)

=> 33.2009 = 33x

=> x = 2009

7 tháng 6 2020

Thanks bn nhìu nha, mình sẽ K cho bn ngay. Bn kb với mình nha.

14 tháng 4 2019

c)  \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\) 

\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\) 

\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)

\(=2\left(1-\frac{1}{16}\right)\) 

\(=2.\frac{15}{16}\) 

\(=\frac{15}{8}\) 

Vậy A=\(\frac{15}{8}\)

14 tháng 4 2019

a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)

\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=3\left(1-\frac{1}{100}\right)\)

\(=3.\frac{99}{100}=\frac{297}{100}\)

26 tháng 9 2017

( 1/100-1/2) : 1/6 + 1=-97/50

(1/100+1/2)*97/50:2=-51/388

10 tháng 5 2017

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)

BẤM ĐÚNG NHÉ

8 tháng 6 2017

1023/1024 nhé bạn

29 tháng 6 2018

mk lỡ lm lộn bài của bn huỳnh kim đạt ở bài dưới nha 

mk xin lỗi !