Cho tam giác ABC (Â=90độ), AB=3cm, AC=6cm. Phân giác  cắt BC tại D. Từ B kẻ BH⊥AD cắt AC tại E, và từ C kẻ đường thẳng song song với BE cắt AD tại F.
a.Tính BC?
b.Chứng minh tam giác BED cân.
c.Chứng minh ED đi qua trung điểm BF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
này đề bài bạn có sai k vậy sao có tận 2 cái điểm E lại ở 2 vị trí khác nhau vậy?
Cho tam giác ABC. Kẻ tia phân giác AD của Â( D thuộc BC). Từ D kẻ đường thẳng song song với AB, đường này cắt cạnh AC tại điểm E. Qua E ta kẻ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm E.
là sao z
hik như đề sai
a: \(\widehat{EAD}=\widehat{BAD}\)
mà \(\widehat{ADE}=\widehat{BAD}\)
nên \(\widehat{EAD}=\widehat{ADE}\)
b: Xét tứ giác BFED có
FE//BD
BF//ED
Do đó: BFED là hình bình hành
Suy ra: \(\widehat{ABC}=\widehat{DEF}\)
a) Vì: DE//AB(gt)
=> ^BAD=^ADE (sole trong)
Mà ^BAD=^EAD(gt)
=>^EAD=^ADE
b)Vì: DE\\AB(gt)
=>^AFE=^DEF (sole trong)
Mà: EF//BC
=>^AFE=^ABC
Nên ^ABC=^DEF
Bạn chứng minh dựa vào 2 đường thẳng song song vs nhau rồi suy ra góc đồng vị và so le trong nhé.
a, vì ED// AB=>góc EDA = góc BAD mà góc BAD = góc EAD( vì AD là phân giác góc A) nên góc EDA=EAD. câu b F ở đâu vậy
a: \(\widehat{EAD}=\widehat{BAD}\)
mà \(\widehat{ADE}=\widehat{BAD}\)
nên \(\widehat{EAD}=\widehat{ADE}\)
b: Xét tứ giác BFED có
FE//BD
BF//ED
Do đó: BFED là hình bình hành
Suy ra: \(\widehat{ABC}=\widehat{DEF}\)
a: \(\widehat{EAD}=\widehat{BAD}\)
mà \(\widehat{ADE}=\widehat{BAD}\)
nên \(\widehat{EAD}=\widehat{ADE}\)
b: Xét tứ giác BFED có
FE//BD
BF//ED
Do đó: BFED là hình bình hành
Suy ra: \(\widehat{ABC}=\widehat{DEF}\)
a: BC=căn 3^2+6^2=3*căn 5(cm)
Xét ΔABE có
AH vừa là phân giác, vừa là đường cao
=>ΔABE cân tại A
=>AH là trung trực của BE
=>D nằm trên trung trực của BE
=>DB=DE
=>ΔDBE cân tại D