Tìm x biết:
|1 - 3x| = |2x + 5|
giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
A. 2.\(|3x+1|\)=\(\frac{3}{4}\)-\(\frac{5}{8}\)
2.\(|3x+1|\)=1/8
\(|3x+1|\)=1/8:2
\(|3x+1|\)=1/16
TH1 : 3x+1=1/16
3x=1/16-1
3x=-15/16
x=-15/16:3
x=-5/16
a,\(\frac{3}{4}-2.\left|3x+1\right|=\frac{5}{8}\)
\(\Rightarrow2.\left|3x+1\right|=\frac{3}{4}-\frac{5}{8}=\frac{6}{8}-\frac{5}{8}=\frac{1}{8}\)
\(\Rightarrow\left|3x+1\right|=\frac{1}{8}.\frac{1}{2}=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{16}\\3x+1=\frac{-1}{16}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3x=\frac{1}{16}-1=\frac{-15}{16}\\3x=\frac{-1}{16}-1=\frac{-17}{16}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-15}{16}.\frac{1}{3}=\frac{-5}{16}\\x=\frac{-17}{16}.\frac{1}{3}=\frac{-17}{48}\end{cases}}\)
Vậy....
b,\(\left|3x+2\right|-\left|x-3\right|=\frac{7}{2}\left(1\right)\)
Ta có bảng xét dấu
x | \(\frac{-2}{3}\) 3 |
3x+2 | - 0 + | + |
x-3 | - | - 0 + |
Nếu x<\(\frac{-2}{3}\) thì \(\left|3x+2\right|-\left|x-3\right|\) \(=-3x-2-3+x\)
\(=-2x-5\)
Từ (1) \(\Rightarrow-2x-5=\frac{7}{2}\)
\(\Rightarrow-2x=\frac{7}{2}+5=\frac{17}{2}\)
\(\Rightarrow x=\frac{17}{2}\cdot\frac{-1}{2}=\frac{-17}{4}\)(thỏa mãn x<\(\frac{-2}{3}\)
Nếu \(\frac{-2}{3}\le x\le3\)thì \(\left|3x+2\right|-\left|x-3\right|=3x+2-\left(3-x\right)\)
\(=3x+2-3+x\)
\(=2x-1\)
Từ (1)\(\Rightarrow\)\(2x-1=\frac{7}{2}\)
\(\Rightarrow2x=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{4}\)(thỏa mãn......
Còn trưonwfg hợp cuối bạn tự làm nốt nhé
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)
Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
\(x=0\)
Lập bảng xét dấu :
\(x\) \(0\) \(\dfrac{9}{16}\)
\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\) \(-\) \(0\) \(-\) \(0\) \(+\)
\(\left|x\right|\) \(-\) \(0\) \(+\) \(0\) \(+\)
TH1 : \(x< 0\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))
TH2 : \(0\le x\le\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))
TH3 : \(x>\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))
Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)
\(\left(2x+1\right)\left(x^2-x\right)+x\left(5+x-2x^2\right)=3x+7\)
\(2x^3-2x^2+x^2-x+5x+x^2-2x^3=3x+7\)
\(5x-x=3x+7\)
\(4x-3x=7\)
\(x=7\)
(2x+1)(x^2-x)+x(-2x^2+x+5)=3x+7
=>2x^3-2x^2+x^2-x-2x^3+x^2+5x=3x+7
=>-x^2-x+x^2+5x=3x+7
=>4x=3x+7
=>x=7
\(\left(4x+2\right)-\left(3x-4\right)=-2x+9\)
\(\Rightarrow4x+2-3x+4=-2x+9\)
\(\Rightarrow4x-3x+2x=9-2-4\)
\(\Rightarrow3x=3\)
\(\Rightarrow x=3:3=1\)
`Answer:`
\(\left|1-3x\right|=\left|2x+5\right|\)
\(\Leftrightarrow\left|-3x+1\right|=\left|2x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}-3x+1=2x+5\\-3x+1=-\left(2x+5\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-3x+1-2x=2x+5-2x\\-3x+1=-2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-5x+1=5\\-3x+1+2x=-2x-5+2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-5x+1-1=5-1\\-x+1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-5x=4\\-x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{4}{5}\\x=6\end{cases}}\)