Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b, \(\left(2x-4\right)\left(9-3x\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-4>0\\9-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}\Leftrightarrow2< x< 3}}\)
a. \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b. \(\left(2x-4\right)\left(9-3x\right)>0\Leftrightarrow18x-6x-36+12x>0\Leftrightarrow24x>36\Leftrightarrow x>\frac{3}{2}\)
c. \(\frac{2}{3}x-\frac{3}{4}>0\Leftrightarrow\frac{2}{3}x>\frac{3}{4}\Leftrightarrow x>\frac{9}{8}\)
d. \(\left(\frac{3}{4}-2x\right)\left(\frac{-3}{5}+\frac{2}{-61}-\frac{17}{51}\right)\le0\)
\(\Leftrightarrow\frac{3}{4}-2x\le0\Leftrightarrow2x\le\frac{3}{4}\Leftrightarrow x\le\frac{3}{8}\)
e. \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\)
Tương tự đến hết, kiểm tra lại hộ mk nhé !
\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)
Thay vào phương trình 1 ta có :
\(6\left(10+y\right)-5y=0\)
\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)
Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)
à mk xin lỗi d ko áp dụng đc
\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)
Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)
Làm nốt nhé !
Cái câu đầu bn nhập sai rùi
Câu 2
\(x^5=2x^7\)
\(\frac{x^5}{x^7}=2\)
\(\frac{1}{x^2}=2\)
\(\left(\frac{1}{x}\right)^2=2\)
\(\frac{1}{x}=\sqrt{2}\)
Câu cuối
Ta thấy 2, 3, 5 đều là số nguyên tố nên
Ta phân tích 144 thành số nguyên tố \(2^4\cdot3^2\)
Thay vào Ta tính x=6; y=5
Vì số nào lũy thừa 0 lên cũng bằng 1 nên
Ta có thể viết \(144=2^4\cdot3^2\cdot5^0\)
Thay vào ta tính z=1
o phan dau tien ta co
x-5nhan căn bậc hai của x bằng 0
=>5 nhan can bac hai cua x bang x
=>ta co the thay x bang 5 nhan can bac hai cua x
thay vao ta duoc 5 nhan can bac hai cua x nhan voi5 nhan can bac hai cua x bang x^2
25*x=x^2=x*x
suy ra x=25
vay x=25
o phan tiep theo
x5=2x7
=>x.x.x.x.x.1=2.x.x.x.x.x.x.x
=>1=2.x.x
=>1/2=x*x
=>x= can bac hai cua 1/2
o phan cuoi cung
2x-2.3y-3.5z-1=144
=>2^x/4.3^y/9.5^z/5=144
=>2^x.3^y.5^z=144/4/9/5=0.8
ma o day ta thay 0.8 khong chua h chia het cho y x va z
vay ko co cap x y z nao thoa man
\(a,\frac{-3}{2}-2x+\frac{3}{4}=-1\)
\(\frac{-3}{2}-2x=-1-\frac{3}{4}\)
\(\frac{-3}{2}-2x=\frac{-7}{4}\)
\(2x=\frac{-7}{4}+\frac{-3}{2}\)
\(2x=\frac{-13}{4}\)
\(x=\frac{-13}{4}:2\)
\(x=\frac{-13}{4}.\frac{1}{2}\)
\(x=\frac{-13}{8}\)
c) l x - 5 l = 2x
\(\Leftrightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=5\\x+2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Hok tốt!!!!!!!
Tìm x, biết:
a) |2x + 1| = 17
<=>\(\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\x=-9\end{cases}}\)
a) Phá trị tuyệt đối ra thành 2 trường hợp:
TH1: |3x - 2| - x = 7
=> 3x - 2 - x =7
=> 2x = 9
=> x = 4,5
TH2: |3x - 2| - x = 7
=> 2 - 3x - x = 7
=> 2 - 4x = 7
=> -5 = 4x
=> x = -1,25
Vậy x = -1,25 hoặc x = 4,5
b) Ta phá trị tuyệt đối:
TH1: |2x - 3| > 5
=> 2x - 3 > 5
=> 2x > 8
=> x > 4 (1)
TH2: |2x - 3| > 5
=> 3 - 2x > 5
=> 2x > -2
=> x > -1 (2)
Từ (1) và (2) ta suy ra x > 4
HAI Ý CÒN LẠI BẠN CŨNG PHÁ TRỊ TUYỆT ĐỐI RA THÀNH 2 TRƯỜNG HỢP NHA !!!
`Answer:`
\(\left|1-3x\right|=\left|2x+5\right|\)
\(\Leftrightarrow\left|-3x+1\right|=\left|2x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}-3x+1=2x+5\\-3x+1=-\left(2x+5\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-3x+1-2x=2x+5-2x\\-3x+1=-2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-5x+1=5\\-3x+1+2x=-2x-5+2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-5x+1-1=5-1\\-x+1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-5x=4\\-x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{4}{5}\\x=6\end{cases}}\)