Tính a5+ b5=? Biết a+b=-5 và ab=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
Đặt \(A=a^5+b^5+c^5\)
\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)
Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5
Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5
Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)
Vậy \(B=a^5-a⋮5\) với mọi a nguyên
Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c
\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)
(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))
Câu 2:
a) * Hàm tính tổng
Hàm SUM tính tổng của một dãy các số
Công thức = SUM(a,b,c,...)
b) * Hàm tính TBC
Hàm AVERAGE tính TBC của 1 dãy số
Công thức = AVERAGE(a,b,c,...)
c) *Hàm xác định giá trị lớn nhất
Hàm MAX xác định giá trị lớn nhất trong 1 dãy số
Công thức = MAX(a,b,c,...)
d) * Hàm xác định giá trị nhỏ nhất
Hàm MIN xác định giá trị nhỏ nhất trong 1 dãy số
Công thức = MIN(a,b,c,...)
Chúc bạn học tốt!
Câu 1: Giả sử trong các ô A5, B5, C5, E1 lần lượt chứa các số : 4, 8, 12, 6. Hãy cho biết kết quả các công thức tính sau:
a) = AVERAGE(A5,B5,C5,E1)
Kết quả là:………(4+8+12+6)/4 = 7.5…………
b) = MIN( A5,B5,C5,E1,-5)
Kết quả là:………-5………..…
c) = MAX( A5,B5,C5,10,E1)
Kết quả là:………12……………
d) = SUM( A5,B5,C5,-2,E1)
Kết quả là:…………4 + 8 + 12 + (-2) + 6 = 28…………
Có : a + b + c = 0
=> (a + b)5 = (-c)5
a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = -c5
a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4
a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)
a5 + b5 + c5 = -5ab[(a3 + b3) + (2a2b + 2ab2)]
a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]
a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)
a5 + b5 + c5 = 5abc(a2 + b2 + ab) (do a+b+c=0=> a+b=-c)
2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)
2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]
2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]
2(a5 + b5 + c5) = 5abc(a2 + b2 + c2) (do a+b=-c=> (a +b )2 = c2
\(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)
Vậy...
\(a^5+b^5=-275\)
Ta có a + b = -5 <=> a = -5 - b
Thế vào ab = 6 <=> -5b - b2 = 6 <=> b = -2 hoặc - 3 thế vào được a = -3 hoặc -2
Từ đó a5 + b5 = (-2)5 + (-3)5 = -275