Cho B = { 11; 15; 19;......} có 2006 phần tử. Tìm phần tử lớn nhất của B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét chữ số tận cùng của các lũy thừa trên đều là 1
\(\rightarrow1+11^1+11^2+11^3+...+11^9\)
\(=1+\overline{...1}+\overline{...1}+\overline{...1}+...+\overline{...1}\)
\(=11^0+11^1+11^2+...+11^9\)
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
\(\Rightarrow B⋮5\)( theo dấu hiệu chia hết )
Xét chữ số tận cùng của các lũy thừa trên đều là 1
→1+111+112+113+...+119→1+111+112+113+...+119
=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯
=110+111+112+...+119=110+111+112+...+119
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết )
Xét chữ số tận cùng của các lũy thừa trên đều là 1
→1+111+112+113+...+119→1+111+112+113+...+119
=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯
=110+111+112+...+119=110+111+112+...+119
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết ) soo
a) Ta có A = 710 + 79 - 78
= 78( 72 + 7 - 1 )
= 78 . 55 ⋮ 11 vì 55 ⋮ 11
Vậy A ⋮ 11
b) Ta có B = 115 + 114 + 113
= 113( 112 + 11 + 1 )
= 113 . 133 ⋮ 7
Vậy B ⋮ 7
a,A=710+79-78=78(72+7-1)=78x55 ⋮11 vì 55⋮11
b,115+114+113=113(112+11+1)=113x133⋮7 vì 133⋮7
Giả sử a=7; b=1 => 2a-3b=2.7-3.1=11 chia hết cho 11
=> 3a-b=3.7-1=20 không chia hết cho 11 => đề bài sai nếu 2a-3b chia hết cho 11 thì 3a+b chia hết cho 11 mới đúng
+ 2a-3b chia hết cho 11 => 4(2a-3b) chia hết cho 11 => 4(2a-3b)=8a-12b=11a-11b-3a-b=11(a-b)-(3a+b) chia hết cho 11
Mà 11(a-b) chia hết cho 11 => 3a+b chia hết cho 11
+ 3a+b chia hết cho 11 mà a chia hết cho 11 => 3a chia hết cho 11 => b chia hết cho 11
\(\frac{8}{11}+\frac{a}{b}=\frac{8}{11}\)
\(\Rightarrow\frac{a}{b}=0\)
\(\Rightarrow a=0;b\in Z;b\ne0\)
Số số hạng của dãy số B là :
(9-0):1+1=10
Ta có : 119+ 118 + 117+...+ 110
=) ...1 + ...1 + ...1+... + ...1
Vì có 10 số số hạng nên : ...1 + ...1 + ...1+... + ...1 = ...0
Mà số có tận cùng là 0 luôn luôn chia hết cho 5 ( 10 chia hết cho 5, 20 chia hết cho 5 , .... )
Vậy B chia hết cho 5.
B=1+11+112+...+1199
=(1+11+112+113+114)+(115+116+117+118+119)+...+(1195+1196+1197+1198+1199)
=1(1+11+112+113+114)+115(1+11+112+113+114)+...+1195(1+11+112++113+114)
=1.16105+115.16105+...+1195.16105 chia hết cho 5
Vậy B chia hết cho 5.
Học tốt!
Ta có : B =1+11^1+11^2+11^3+...+11^99 =>11B=11+11^2+11^3+11^4+...+11^100 =>10B=(11+11^2+11^3+11^4+...+11^100)-(1+11^1+11^2+11^3+...+11^99) =>10B=11^100-1 mà 11 mũ 100 có tận cùng =1 nên 11 mũ 100 -1 có tận cùng =0 nên chia hết cho 5. =>B =(11^100-1):10 cũng có tận cùng bằng 0 nên cũng chia hết cho 5. Vậy B chia hết cho 5. (lưu ý: ^ là mũ)
Ta có :số thứ nhất là:(1+2).4-1=11
số thứ hai là:(2+2).4-1=15
Vậy số thứ 2006 là:(2006+2).4-1=8031
Vậy phần tử lớn nhất của B là 8031