K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

3≡−1(mod4)⇒3100≡(−1)100=1(mod4)
Vậy 3100 chia 4 dư 1.


a) Ta có 3S=3−32+33−34+...+397−398+399−3100
⇒3S+S=1−3100⇒S=(1−3100)/4
Để chứng minh S chia hết cho 20 ta chứng minh 1−3100 chia hết cho 80.

Ta có 32=9≡−1(mod5)⇒3100≡(−1)50=1(mod5)⇒1−3100≡1−1=0(mod5)
Vậy 1−3100 ⋮5
Ta có 34=81≡1(mod16)⇒3100≡125=1(mod16)⇒1−3100≡1−1=0(mod16)
Vậy 1−3100 ⋮16

Do (5,16)=1⇒1−3100⋮16.5=80⇒(1−3100)/4 ⋮20⇒S thuộc B 20

Sorry vừa ròi mk nhầm S=\(\frac{1-3^{100}}{4}\)mới đúng nha

18 tháng 8 2016

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}.\)

\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}.\)

\(3S+S=\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)

\(4S=-3^{100}+1\)

\(S=\frac{-3^{100}+1}{4}\)

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

13 tháng 3 2021

qua đúng

 

18 tháng 8 2016

S = 1-3+32-33+...+398-399

3S=3-32+33-34+...+399-3100

=>3S-S=2S=1-3100

\(S=\frac{1-3^{100}}{2}\)

18 tháng 8 2016

S = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99

=> 3S = 3 - 3^2 + 3^3 - 3^4 + ... + 3^98 - 3^100

=> 3S + S = (3 - 3^2 + 3^3 - 3^4 + ... + 3^98 - 3^100) + (1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99)

=> 4S = 1 - 3^100

=> S = 1 - 3^100 / 4

26 tháng 8 2021

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)

Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)

23 tháng 6 2023

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)

 

17 tháng 12

nhớ ngắn gọn nha

a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)

\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)

\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)

\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)

9 tháng 8 2016

A B C D H

Ta có: SBHD= 1/2. BH.DH (vì tam giác BHD vuông tại H)

Lại có: SABH=1/2.BH.AH (vì tam giác ABH vuông tại H)

Nhận thấy: DH= 1/3.AH (vì 2.DH=AD)

=> 1/2.BH.DH = 1/2.BH.1/3.AH

=> SBDH = 1/3.SABH

8 tháng 8 2016

+ Nếu n lẻ thì 3n lẻ => 3n + 1 chẵn => 3n + 1 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2

+ Nếu n chẵn thì n + 2 chẵn => n + 2 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2

Vậy B = (n + 2).(3n + 1) luôn chia hết cho 2 (đpcm)

15 tháng 5 2018

Ta xét từng trường hợp sau:

 Nếu n là số lẽ thì n chia hết cho 2 =>    B chia hết cho 2

Nếu n chẵn thì n+2 chẵn => n+2 chia hết cho 2 => B chia hết cho 2

Vậy \(B=\frac{n+2}{3n+1}\)chia hết cho 2

17 tháng 12 2017

=> 12x-33 = 3

=> 12x = 3+33 = 36

=> x = 36 : 12 = 3

Vậy x=3

k mk nha

17 tháng 12 2017

12x-33=32018:32017

12x-33=3

12x=3+33

12x=36

x=36:12

x=3