P=-5xy + 9x - 8y và Q= -9x +6y P+Q=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a : Xin phép được sửa đề .
\(2x^2-5xy+3y^2\)
\(=2x^2-2xy-3xy+3y^2\)
\(=2x\left(x-y\right)-3y\left(x-y\right)\)
\(=\left(x-y\right)\left(2x-3y\right)\)
Câu b: \(x^2-y^2+10x-6y+16\)
\(=\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
\(=\left(x+5\right)^2-\left(y+3\right)^2\)
\(=\left(x+5-y-3\right)\left(x+5+y+3\right)\)
\(=\left(x-y+2\right)\left(x+y+8\right)\)
Câu c :
\(15-6x-9x^2\)
\(=15-15x+9x-9x^2\)
\(=15\left(1-x\right)+9x\left(1-x\right)\)
\(=\left(1-x\right)\left(15+9x\right)\)
Wish you study well !!
1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)
2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)
3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)
\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)
ta có : \(\left(3x+2\right)^2\ge0\forall x\) và \(\left(2y-2\right)^2\ge0\forall y\)
\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)
\(\Rightarrow\) phương trình vô nghiệm
a) A - B + C = (x2 - 4xy + 5y2 - 7x + 6y + 23) - (7x2 + 5xy - 3y2 - 8y - y + 14) + (5x2 + 9xy - 8x2 + 27x - 15 + 31)
= x2 - 4xy + 5y2 - 7x + 6y + 23 - 7x2 - 5xy + 3y2 + 8y + y - 14 + 5x2 + 9xy - 8x2 + 27x - 15 + 31
= (x2 - 7x2 + 5x2 - 8x2) + (-4xy - 5xy + 9xy) + (5y2 + 3y2) + (-7x + 27x) + (6y + 8y + y) + (23 - 14 - 15 + 31)
= -9x2 + 8y2 + 20x + 15y + 25
\(M=12xz-5xy=x\left(12z-5y\right)\)
\(N=64^2-49=64^2-7^2=\left(64-7\right)\left(64+7\right)\)
\(P=25y^2-16z^2=\left(5y\right)^2-\left(4z\right)^2=\left(5y-4z\right)\left(5y+4z\right)\)
\(Q=4-25y^2=2^2-\left(5y\right)^2=\left(2-5y\right)\left(2+5y\right)\)
\(R=25x^2-10x+1=\left(5x-1\right)^2\)
\(O=16-8y+y^2=\left(4-y\right)^2\)
\(X=1-6x+9x^2=\left(1-3x\right)^2\)
Em chuyển 9x = 8y - 31 thành 8b - 9b = 31 cho dễ làm ạ
Từ \(8b-9a=31\Rightarrow b=\frac{31+9a}{8}=\frac{32-1+8a+a}{8}\in N\)
\(\Rightarrow a-1⋮8\Rightarrow a=8k+1\left(k\in N\right)\Rightarrow b=\frac{31+72k+9}{8}=9k+5\)
\(\Rightarrow\frac{a}{b}=\frac{8k+1}{9k+5}\)Mà \(\frac{11}{17}< \frac{a}{b}< \frac{2329\Rightarrow11}{17}< \frac{8k+1}{9k+5}< \frac{23}{29} \)
+ Với \(\frac{11}{17}< \frac{8k+1}{9k+5}\Rightarrow11.\left(9k+5\right)< 17.\left(8k+1\right)\Rightarrow99k+55< 136k+17\Rightarrow37k>38\)
\(\Rightarrow k>\frac{38}{37}\Rightarrow k>1\) (1)
Với \(\frac{8k+1}{9k+5}< \frac{23}{29}\Rightarrow29.\left(8k+1\right)< 23.\left(9k+5\right)\Rightarrow232k+29< 207k+115\Rightarrow25k< 86\)
\(\Rightarrow k< \frac{86}{25}\Rightarrow k< 4\) (2)
Từ (1) và (2) suy ra \(1< k< 4\)mà \(k\in N\)nên \(k\in\left\{2;3\right\}\)
Với \(k=2\)thì \(\frac{a}{b}=\frac{17}{25}\)
Với \(k=3\)thì \(\frac{a}{b}=\frac{25}{32}\)
Vậy............
\(P+Q=-5xy+\left(9x-9x\right)\)\(+\)\(\left(-8y+6y\right)\)
\(P+Q=-5xy-2y\)
\(P+Q=-5xy+9x-8y-9x+6y=-5xy-2y\)