Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N là hình chiếu vuông góc của H trên AB, AC. Cm:HN vuong goc voi AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng HTL trong tam giác vuông với tam giác $AHB, AHC$:
$AM.AB=AH^2$
$AN.AC=AH^2$
Do đó nếu muốn cm $AM.AB=AB^2-AN.AC$ thì:
$AH^2=AB^2-AH^2$
$\Leftrightarrow 2AH^2=AB^2$
Cái này thì không có cơ sở để cm. Bạn coi lại đề.
Gọi O là giao của EF và AH, K là giao AM và EF
Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn
Do đó \(OE=OF=OH=OA\)
\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)
Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)
\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)
Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)
Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)
Vậy AM vuông góc EF
Ta thấy 1 cặp tam giác đồng dạng quen thuộc là \(\Delta HAB~\Delta HCA\), từ đó suy ra \(\dfrac{S_{HAB}}{S_{HCA}}=\left(\dfrac{AB}{AC}\right)^2\). Mà ta lại có \(\dfrac{S_{HAB}}{S_{HCA}}=\dfrac{HB}{HC}\) (2 tam giác có chung đường cao hạ từ A) nên suy ra đpcm.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
b: CS cắt AB ở đâu vậy bạn?
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
a/
Xét tg vuông ABH
\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AN.AC\) (lý do như trên)
\(\Rightarrow AM.AB=AN.AC\)
b/
\(AN\perp AB;MH\perp AB\) => AN//MH
\(AM\perp AC;NH\perp AC\) => AM//NH
=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Mặt khác \(\widehat{A}=90^o\)
=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế
\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)
Xét tg vuông ABH
\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)
Xét tg vuông ACH, c/m tương tự
\(NH^2=CN.AN\) (3)
Thay (2) và (3) vào (1)
(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)
Mà AM = NH; AN = MH (cmt)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)