C/M: 7a^2 5b^2 / 7c^2 5d^2 = ab/cd
- Mình đang cần gấp mong mấy bạn giúp ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{7a^2+5b^2}{7c^2+5d^2}=\frac{ab}{cd}\Leftrightarrow\frac{7\left(bk\right)^2+5b^2}{7\left(dk\right)^2+5d^2}=\frac{bkb}{dkd}\)
Xét VT \(\frac{7\left(bk\right)^2+5b^2}{7\left(dk\right)^2+5d^2}=\frac{7b^2k^2+5b^2}{7d^2k^2+5d^2}=\frac{b^2\left(7k^2+5\right)}{d^2\left(7k^2+5\right)}=\frac{b^2}{d^2}\left(1\right)\)
Xét VP \(\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) -->Đpcm
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)
Từ (1) và(2) ta có:
\(\dfrac{2a+5b}{2c+5d}\) = \(\dfrac{3a-2b}{3c-2d}\)(đpcm)
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\) ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)
I)1.B
2.B
3.C
4.D
5.C
II)
1.B
2.D
3.B
4.B
5.A
6.B
7.tell....way.
8.C
III)
1.isn't teaching
2.drive
3.has
1/
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b,\(\frac{a}{b}=\frac{c}{d}=\frac{4a}{4b}=\frac{7c}{7d}=\frac{4a+7c}{4b+7d}\)
2/
Gọi số học sinh tham gia của mỗi lớp lần lượt là a,b,c
Ta có: \(2a=3b=4c\)
\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{6+4+3}=\frac{130}{13}=10\)
=> a/6 = 10 => a = 60
b/4 = 10 => b = 40
c/3 = 10 => c = 30
Vậy số học sinh mỗi lớp lần lượt là 60 hs, 40 hs, 30hs
ĐK: \(b,d\ne0\)
+) Với a = 0 <=> c = 0
=> \(\frac{7.0+5b}{7.0-5b}=\frac{7.0+5d}{7.0-5d}\)luôn đúng
+) Với \(a,c\ne0\)
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{7a}{7c}=\frac{5b}{5d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{7a}{7c}=\frac{5b}{5d}=\frac{7a-5d}{7c-5d}=\frac{7a+5d}{7c+5d}\)
=> \(\frac{7a+5d}{7a-5d}=\frac{7c+5d}{7c-5d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk\), \(c=dk\)
Ta có: \(\frac{7a+5b}{7a-5b}=\frac{7bk+5b}{7bk-5b}=\frac{b\left(7k+5\right)}{b\left(7k-5\right)}=\frac{7k+5}{7k-5}\)
mà \(\frac{7c+5d}{7c-5d}=\frac{7dk+5d}{7dk-5d}=\frac{d\left(7k+5\right)}{d\left(7k-5\right)}=\frac{7k+5}{7k-5}\)
\(\Rightarrow\frac{7a+5b}{7a-5b}=\frac{7c+5d}{7c-5d}\left(đpcm\right)\)