K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

bạn chép lại dề nha

ta có x-y-z =0

nên x-z=0 

       x-y=z tương tự với  y-x ==-z

       -y-z=-x tương tự với y+z=x

thay vào ta có 

bạn chép lại biểu thức tại đây

(x-z/x) (y-x/y) (z+y/z)

=y/x     (-z/y  )    x/z

=    -zxy/zyx

=    -1

phần nào ko hiểu ở bài bạn có thể hỏi mình

 

9 tháng 9 2015

+) Th1: nếu 3 số x;y;z có cùng số dư khi chia cho 3 => x - y ; y - z; z - x chia hết  cho 3

=> Tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 =27

+) Th2: Nếu có 2 trong 3 số có cùng số dư khi chia cho 3. Giả sử hai số đó là x; y. 

*Nếu x; y chia cho 3 dư 0 => x - y chia hết cho 3

 mà (x - y)(y - z)(z -x) = x+ y + z => x+ y + z chia hết cho 3 => z chia hết cho 3

=> (y - z); (z - x) chia hêtw cho 3 => tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 = 27

* Nếu x; y chia cho 3 dư 1 => x - y chia hết cho 3 => x+ y + z chia hết cho 3. mà x + y chia cho 3 dư 2 => z chia cho 3 dư 1

=> x; y ; z chia cho 3 có cùng số dư => Tích (x - y)(y - z)(z-x) chia hết cho 27

* Tương tự, nếu x; y chia cho 3 dư 2 => z chia cho 3 dư 2 => Tích (x - y)(y - z)(z - x) chia hết cho 27

=> x+ y + z chia hết cho 27

+) Th3: Cả số x; y ; z không có cùng số dư khi cho 3

=> x; y; z chia cho 3 dư là  0;1 ; 2 và các hiệu x - y ; y - z; z - x không chia hết cho 3

x; y ;z chia cho 3 dư 0; 1;2 => x+ y + z chia hết cho 3 

tích (x - y)(y - z)(z - x) không chia hết cho 3 mà (x - y)(y - z)(z - x)  = x+ y + z

=> Th3 không xảy ra

Vậy ....

3 tháng 6 2020

- Nếu x,y,z khác số dư khi chia cho 3

+ Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x, y đều chia hết cho 3, z không chia hết cho 3

=> x + y + z không chia hết cho 3. Do x, y đều chia hết cho 3 nên (x−y)⋮3

=> (x − y)(y − z)(z − x)⋮3 (Vô lý do (x − y)(y − z)(z − x) = x + y + z )

+ Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.

Vậy cả 3 số có cùng số dư khi chia cho 3

=>(x − y)⋮3;(y − z)⋮3;(z − x)⋮3

=>(x − y)(y − z)(z − x)⋮27

=> x + y + z⋮27

6 tháng 7 2023

Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)

Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)

\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)

\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\)

\(=3\)

Vậy P=3

25 tháng 8 2017

ta có: 

Từ x/3 = y/4 => x/9 = y/12 (1) 

Từ y/3 = z/5 => y/12 = z/20 (2) 

Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20 

Áp dụng TC DTS BN ta có: 

2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3 

Từ 2x/18 = 3 => x = 27 

Từ 3y/36 = 3 => y = 36

Từ x/20 = 3 => z = 60

25 tháng 8 2017

chia hết cho 27 nhé

4 tháng 10 2019

Cho hỏi ko phải cô giáo có dc làm ko:v

Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)

\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)

Xét \(x+y+z\ne0\) ta có:

\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)

\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)

\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó:

\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)

4 tháng 10 2019

các bạn ơi làm hộ mình với